Algorithm for the structure of large spherical clusters

  • I. László
Atomic and Molecular Physics


An algorithm has been developed for calculating the geometrical structure of large spherical clusters. The Cartesian coordinates of the atoms and of the neighbouring atoms as well as of the atoms in the shell are also determined. The procedure contains a simple sorting method. The storage requirement of the algorithm is aboutN+CN 2/3, whereN is the number of the atoms in the cluster, andC ranges from 0.38 to 1.54.


Sorting Storage Requirement Neighbour Atom Code Number Spherical Cluster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Messmer andG. D. Watkins, Phys. Rev. Lett.,25, 565, 1970.CrossRefGoogle Scholar
  2. 2.
    R. P. Messmer andG. D. Watkins, Radiation Effects in Semiconductors, ed. by J. Corbett and G. D. Watkins, Gordon and Breach, New York, p. 23, 1971.Google Scholar
  3. 3.
    R. P. Messmer andG. D. Watkins, Phys. Rev.,B7, 2568, 1973.ADSGoogle Scholar
  4. 4.
    F. P. Larkins, J. Phys.,C4, 3065, 1971; ibid. 3077, 1971.ADSGoogle Scholar
  5. 5.
    B. Cartling, B. Roos andU. Wahlgren, Chem. Phys. Lett.,21, 380, 1973.CrossRefADSGoogle Scholar
  6. 6.
    B. Cartling, J. Phys.,C8, 3171, 1975; ibid. 3183, 1975.ADSGoogle Scholar
  7. 7.
    B. Cartling, Int. J. Quant. Chem. Symp.,9, 117, 1975.Google Scholar
  8. 8.
    A. M. Stoneham, Theory of Defects in Solids, ed. by C.E.H. Bawn, H. Fröhlich, P. B. Hirsch, N. F. Mott, Clarendon Press, Oxford, 1975.Google Scholar
  9. 9.
    T. Hoshino, K. Suzuki, Suppl. of the Prog. of Theor. Phys.,57, 87, 1975.CrossRefADSGoogle Scholar
  10. 10.
    W. P. Menzel, K. Mednick, C. C. Lin andC. F. Dorman, J. Chem. Phys.,63, 4708, 1975.CrossRefADSGoogle Scholar
  11. 11.
    A. Zunger, A. Katzir andA. Halperin, Phys. Rev.,B13, 5560, 1976.ADSCrossRefGoogle Scholar
  12. 12.
    D. J. M. Fassaert andvan der Avoird, Surface Sci.,55, 291, 1976.CrossRefADSGoogle Scholar
  13. 13.
    A. Julg, G. Del Re andV. Barone, Phil. Mag.,35, 517, 1977.CrossRefADSGoogle Scholar
  14. 14.
    I. László, Int. J. Quant, Chem.,12, Suppl.2, 105, 1977.Google Scholar
  15. 15.
    L. C. Snyder andZ. Wasserman, Surface Sci.,71, 407, 1978.CrossRefADSGoogle Scholar
  16. 16.
    M. Nishida, Surface Sci.,72, 589, 1978.CrossRefGoogle Scholar
  17. 17.
    W. S. Verwoerd andF. J. Kok, Surface Sci.,80, 89, 1979.CrossRefADSGoogle Scholar
  18. 18.
    C. Pisani andF. Ricca, Surface Sci.,92, 481, 1980.CrossRefADSGoogle Scholar
  19. 19.
    H. Huber, Chem. Phys. Lett.,70, 353, 1980.CrossRefADSGoogle Scholar
  20. 20.
    M. Koiwa, Phil. Mag.,36, 893, 1977.CrossRefADSGoogle Scholar
  21. 21.
    S. Ishioka andM. Koiwa, Phil. Mag.,37, 517, 1978.CrossRefGoogle Scholar
  22. 22.
    M. Koiwa, J. Phys. Soc. Japan,45, 1327, 1978.CrossRefADSGoogle Scholar
  23. 23.
    M. Koiwa andS. Ishioka, Phil. Mag.,A40, 625, 1979.CrossRefGoogle Scholar
  24. 24.
    E. J. Isaac andR. C. Singleton, JACM,3, 169, 1956.CrossRefGoogle Scholar
  25. 25.
    R. A. Kronmal andM. E. Tarter, Proc. ACM Nat’. Conf.,21, 331, 1966.Google Scholar
  26. 26.
    D. E. Knuth, The Art of Computer Programming, Vol. 3. Consulting ed.: R. S. Varga and M. A. Harrison. Addison-Wesley Publishing Company, 1975.Google Scholar

Copyright information

© with the authors 1981

Authors and Affiliations

  • I. László
    • 1
  1. 1.Quantum Theory Group, Institute of PhysicsTechnical UniversityBudapestHungary

Personalised recommendations