Acta Physica Academiae Scientiarum Hungaricae

, Volume 48, Issue 4, pp 369–382 | Cite as

Shocks and waves in thermo-viscous MFD with hidden variables

  • A. Morro


The behaviour of heat conducting viscous fluids, acted on by a magneticfield, is described within the approximation of magnetofluiddynamics through a model accounting for heat conduction and viscosity via hidden variables. The constitutive equations adopted meet the restrictions imposed by the second law of thermodynamics and reduce to Navier-Stokes’ and Fourier’s laws in stationary processes. The foremost result of the paper is that, in general, such constitutive equations allow shock and wave propagation in thermo-viscous fluids. In particular, when the discontinuity fronts enter a region at equilibrium, the shock relations simplify to the standard shock relations of magnetofluiddynamics and the (acceleration) wave relations characterise waves which are the counterpart of the customary Alfvén waves and magnetoacoustic waves. Indeed, viscosity and heat conduction introduce quantitative differences but leave the propagation modes qualitatively unchanged.


Wave Propagation Propagation Mode Hide Variable Singular Surface Magnetoacoustic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. G. Kulikovskii andG. A. Lyubimov, Sov. Phys. Dok.,4, 1185, 1959/60.MathSciNetGoogle Scholar
  2. 2.
    H. Cabannes, Theoretical Magnetofluiddynamics, Academic Press, New York, 1970.Google Scholar
  3. 3.
    L. D. Landau andE. M. Lifshitz, Fluid Mechanics, Pergamon Press, Oxford, 1959.Google Scholar
  4. 4.
    G. Maugin, J. Phys. A,7, 465, 1974.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    E. Massa andA. Morro, Ann. Inst. Henri Poincaré,29, 423, 1978.MATHMathSciNetGoogle Scholar
  6. 6.
    A. Morro, Arch. Mech.,32, 145, 1980.MATHMathSciNetGoogle Scholar
  7. 7.
    B. D. Coleman andM. E. Gurtin, J. Chem. Phys.,47, 597, 1967.CrossRefADSGoogle Scholar
  8. 8.
    W. Kosinski andP. Perzyna, Arch. Mech.,24, 629, 1972.MATHMathSciNetGoogle Scholar
  9. 9.
    W. A. Day, Arch. Ratl Mech. Anal.,62, 367, 1976.MATHCrossRefGoogle Scholar
  10. 10.
    F. Bampi andA. Morro, Acta Phys. Polon. B,10, 1081, 1979.Google Scholar
  11. 11.
    A. Morro, Arch. Mech.,32, 193, 1980.MATHMathSciNetGoogle Scholar
  12. 12.
    M. F. McCarthy, Continuum Physics II (A.C. Eringen ed.), Academic Press, New York, 1975.Google Scholar
  13. 13.
    R. A. Matzner andC. W. Misner, Ap. J.171, 415, 1972.CrossRefADSGoogle Scholar
  14. 14.
    R. A. Matzner, Ap. J.,171, 433, 1972.CrossRefADSGoogle Scholar
  15. 15.
    S. Weinberg, Ap. J.,168, 175, 1971.CrossRefADSGoogle Scholar
  16. 16.
    V. A. Belinskii andI. M. Khalatnikov, Sov. Phys. JETP,45, 1, 1977.ADSGoogle Scholar

Copyright information

© with the authors 1980

Authors and Affiliations

  • A. Morro
    • 1
  1. 1.Department of Mathematical PhysicsGenovaItaly

Personalised recommendations