Tijdschrift voor Gerontologie en Geriatrie

, Volume 40, Issue 6, pp 270–278 | Cite as

Pijn en bewegen in relatie tot cognitie en gedrag bij dementie

  • E. Scherder
  • L. Eggermont
  • W. Achterberg
  • B. Plooij
  • K. Volkers
  • R. Weijenberg
  • A. Hooghiemstra
  • A. E. Prick
  • M. Pieper
  • C. Blankevoort
  • S. Zwakhalen
  • M. J. G. van Heuvelen
  • J. Hamers
  • F. Lobbezoo
  • D. Swaab
  • A. M. Pot


Ouderen met een dementie kunnen geconfronteerd worden met een afname in lichamelijke activiteit. Er bestaat een positieve relatie tussen lichamelijke activiteit en cognitie. Ofschoon de causaliteit van deze relatie bij ouderen met een gevorderde dementie nog moet worden aangetoond, komt uit vooral dierexperimenteel onderzoek naar voren welke schadelijke effecten niet bewegen zou kunnen hebben op het gedrag van ouderen met een dementie. Patiënten met een dementie die vanwege agitatie en onrust geïmmobiliseerd worden, kunnen een toename in agitatie en onrust gaan vertonen. Een andere oorzaak van verminderd of niet bewegen kan pijn zijn. Pijn kan zelfs toenemen bij dementie door neuropathologische veranderingen in het centraal zenuwstelsel.

Er is toenemende (inter)nationale belangstelling voor de ontwikkeling van een meer betrouwbare diagnostiek en behandeling van pijn, voor de causaliteit van de relatie tussen pijn en lichamelijke (in)activiteit en voor de causaliteit van de relatie tussen lichamelijke (in)activiteit en cognitie. In dit artikel zullen de verschillende onderwerpen in deze volgorde besproken worden.

lichamelijke activiteit pijn cognitie gedrag dementie 

Pain and physical (in)activity in relation to cognition and behaviour in dementia

Older persons with dementia may become confronted with a decline in the level of physical activity. Indeed, a positive relationship between physical activity and cognition has been demonstrated. Although the causality of this relationship needs to be confirmed in advanced dementia, particularly animal experimental studies show the possible negative influence of restrained physical activity on behavior of patients with dementia. Patients with dementia, who get immobilized because of agitation and restlessness, may show an increase in these two symptoms. Another cause for reduced physical activity or inactivity may be the experience of pain. Pain experience may even increase in dementia by neuropathological changes in the central nervous system.

There is an increasing (inter)national interest for the development of a more reliable assessment and treatment of pain, for the causality of the relationship between pain and physical (in)activity, and for the causality of the relationship between physical (in)activity and cognition in dementia. In the present paper, the various topics will be addressed in this order.

physical activity pain cognition behavior dementia 


  1. Scherder E, Herr K, Pickering G, Gibson S, Benedetti F, Lautenbacher S. Pain in dementia. Pain 2009; Apr 29.Google Scholar
  2. Eggermont LH, Bean JF, Guralnik JM, Leveille SG. Comparing pain severity versus pain location in the MOBILIZE Boston study: chronic pain and lower extremity function. J Gerontol A Biol Sci Med Sci. 2009; 64(7): 763-70. Google Scholar
  3. Kramer AF, Hahn S, Cohen NJ, et al. Ageing, fitness and neurocognitive function. Nature 1999; 400(6743): 418-19. Google Scholar
  4. Nègre-Pagès L, Regragui W, Bouhassira D, Grandjean H, Rascol O, DoPaMiP Study Group. Chronic pain in Parkinson’s disease: the cross-sectional French DoPaMiP survey. Mov Disord 2008; 23(10: 1361-9.Google Scholar
  5. Scherder EJA, Sergeant JA, Swaab DF. Pain processing in dementia and its relation to neuropathology. Lancet Neurol 2003; 2: 677-86.Google Scholar
  6. Kim JH, Greenspan JD, Coghill RC, Ohara S, Lenz FA. Lesions limited to the human thalamic principal somatosensory nucleus (ventral caudal) are associated with loss of cold sensations and central pain. J Neurosci 2007; 27(18): 4995-5004.Google Scholar
  7. Scherder EJ, Slaets J, Deijen JB, et al. Pain assessment in patients with possible vascular dementia. Psychiatry 2003; 66(2): 133-45.Google Scholar
  8. Scherder E, Oosterman J, Swaab D, et al. Recent developments in pain in dementia. BMJ. 2005;330(7489): 461-64.Google Scholar
  9. Zwakhalen SM, Hamers JP, Huijer Abu-Saad HH, Berger MP. Pain in elderly people with severe dementia: A systematic review of behavioural pain assessment tools. BMC Geriatrics 2006; 6: 3.Google Scholar
  10. Rond de M, de Wit R, van Dam F, et al. Daily pain assessment: value for nurses and patients. J Adv Nurs 1999; 29(2): 436-44.Google Scholar
  11. Zwakhalen SM, Koopmans RT, Geels PJ, Berger MP, Hamers JP. The prevalence of pain in nursing home residents with dementia measured using an observational pain scale. Eur J Pain 2009; 13(1): 89-93Google Scholar
  12. Chibnall JT, Tait RC, Harman B, Luebbert RA. Effect of Acetaminophen on Behavior, Well-Being, and Psychotropic Medication Use in Nursing Home Residents with Moderate-to-Severe Dementia. J Am Geriatr Soc 2005; 53: 1921-29.Google Scholar
  13. Pickering G. Paracetamol use in the elderly. J Pain Manag 2008; 1: 35-9.Google Scholar
  14. Pergolizzi J, Böger RH, Budd K, et al. Opioids and the management of chronic severe pain in the elderly: consensus statement of an International Expert Panel with focus on the six clinically most often used World Health Organization step III opioids (buprenorphine, fentanyl, hydromorphone methadone, morphine, oxycodone. Pain Pract 2008; 8(4): 287-313.Google Scholar
  15. Benedetti F, Arduino C, Costa S, et al. Loss of expectation-related mechanisms in Alzheimer's disease makes analgesic therapies less effective. Pain 2006; 121: 133-44.Google Scholar
  16. Hurley AC, Volicer BJ, Hanrahan PA, Houde S, Volicer L. Assessment of discomfort in advanced Alzheimer patients. Res Nurs Health 1992; 15(5): 369-77.Google Scholar
  17. Algase DL, Beck C, Kolanowski A, et al. Need driven dementia-compromised behavior: An alternative view of disruptive behavior. Am J Alzheimers Dis Other Demen 1996; 11: 10-19.Google Scholar
  18. Souder E, O'Sullivan P. Disruptive behaviors of older adults in an institutional setting. Staff time required to manage disruptions. J Gerontol Nurs 2003; 29(8): 31-6.Google Scholar
  19. Kovach CR, Weissman DE, Griffie J, Matson S, Muchka S. Assessment and treatment of discomfort for people with late-stage dementia. J Pain Symptom Manage 1999; 18 (6): 412-19.Google Scholar
  20. Kovach CR, Logan BR, Noonan PE, et al. Effects of the serial trial intervention on discomfort and behavior of nursing home residents with dementia. Am J Alzheimers Dis Other Demen 2006; 21(3): 147-55.Google Scholar
  21. Ashe MC, Miller WC, Eng JJ, Noreau L. Older adults, chronic disease and leisure-time physical activity. Gerontology 2008; 55: 64-72.Google Scholar
  22. Cecchi F, Debolini P, Lova RM, et al. Epidemiology of back pain in a representative cohort of Italian Persons 65 years of age and older. Spine 2006; 31: 1149-55.Google Scholar
  23. Hartvigsen J, Frederiksen H, Christensen K. Physical and mental function and incident low back pain: a population-based two-year prospective study of 1387 Danish twins aged 70 to 100 years. Spine 2006; 31: 1628-32.Google Scholar
  24. Mitchinson AR, Myra Kim H, Geisser M, Rosenberg JM, Hinshaw DB. Social connectedness and patient recovery after major operations. J Am Coll Surg 2008; 206: 292-300.Google Scholar
  25. MacRae PG, Asplund LA, Schnelle JF, Ouslander JG, Abrahamse A, Morris C. A Walking Program for Nursing Home Residents: Effects on Walk Endurance, Physical Activity, Mobility, and Quality of Life. J Am Geriatr Soc 1996; 44: 175-80.Google Scholar
  26. Westerterp KR. Physical activity and aging. Curr Opin Clin Nutr Metab Care 2000; 3: 485-88.Google Scholar
  27. Verghese J, Lipton RB, Katz MJ, et al. Leisure activities and the risk of dementia in the elderly. N Engl J Med 2003; 48: 2508-16.Google Scholar
  28. Rovio S, Kåreholt I, Helkala E-L, et al. Leisure-time physical activity at midlife and the risk of dementia and Alzheimer’s disease. Lancet (Neurol) 2005; 4(11): 705-11.Google Scholar
  29. Rosano C, Simonsick EM, Harris TB, et al. Association between physical and cognitive function in healthy elderly: the health, aging and body composition study. Neuroepidemiology 2005; 24: 8-14.Google Scholar
  30. Mulder, Th, Hochstenbach J. Motor control and learning: implications for neurological rehabilitation, in: Greenwood RJ et al. eds. Handbook of Neurological Rehabilitation. New York: Psychology Press, pp. 143-57, 2003. Google Scholar
  31. Cahn-Weiner DA, Boyle PA, Malloy PF. Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals. Appl Neuropsychol 2002; 9(3): 187-91.Google Scholar
  32. Powell RR. Psychological effects of exercise therapy upon institutionalized geriatric mental patients. J Gerontol 1974; 29(2): 157-61.Google Scholar
  33. Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer’s disease: a randomized trial. JAMA 2008; 300(9): 1027-37.Google Scholar
  34. Uffelen van JG, Chin A Paw MJ, van Mechelen W, Hopman-Rock M. Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomized controlled trial. Br J Sports Med 2008; 42(5): 344-51.Google Scholar
  35. Hillman CH, Erickson KI, Kramer AF. Be smart, exercise your heart: exercise effects on brain and cognition. Nat Rev Neurosci 2008; 9(1): 58-65.Google Scholar
  36. Scherder EJ, Van Paasschen J, Deijen JB, et al. Physical activity and executive functions in the elderly with mild cognitive impairment. Aging Ment Health 2005; 9(3): 272-80.Google Scholar
  37. Sobel BP. Bingo vs. physical intervention in stimulating short-term cognition in Alzheimer's disease patients. Am J Alzheimers Dis Other Demen 2001; 16(2): 115-20.Google Scholar
  38. Eggermont LH, Swaab DF, Hol EM, Scherder EJ. Walking the line. A randomized controlled trial on the effects of a short-term walking program on cognition in moderate dementia. J Neurol Neurosurg Psychiatry 2009; 80(7): 802-4.Google Scholar
  39. Eggermont LH, Blankevoort CG, Scherder EJ. Walking and the rest-activity rhythm in mild-to-moderate dementia. A randomized controlled trial. Submitted for publication.Google Scholar
  40. Blackwell T, Yaffe K, Ancoli-Israel S, et al. Study of Osteoporotic Fractures Group. Poor sleep is associated with impaired cognitive function in older women: the study of osteoporotic fractures. J Gerontol A Biol Sci Med Sci 2006; 61(4): 405-10.Google Scholar
  41. Alessi CA, Martin JL, Webber AP, Cynthia Kim E, Harker JO, Josephson KR. Randomized, controlled trial of a nonpharmacological intervention to improve abnormal sleep/wake patterns in nursing home residents. J Am Geriatr Soc 2005; 53(5): 803-10.Google Scholar
  42. Eggermont LPH, Swaab D, Luiten P, Scherder E. Exercise, cognition and Alzheimer’s disease: More is not necessarily better. Neurosci Biobehav Rev 2006; 30: 563-75.Google Scholar
  43. Uffelen van JG, Chin A Paw MJ, Hopman-Rock M, van Mechelen W. The effects of exercise on cognition in older adults with and without cognitive decline: a systematic review. Clin J Sport Med 2008; 18(6): 486-500.Google Scholar
  44. Jonghe-Rouleau de AP, Pot AM, Jonghe de JFM. Self-injurious behaviour in nursing home residents with dementia. Int J Geriatr Psychiatry 2005; 20: 651-7.Google Scholar
  45. Hamers JPH, Huizing AR. Why do we use physical restraints in the elderly? Z Gerontol Geriat 2005; 38: 19-25.Google Scholar
  46. Cotter VT. Restraint free care in older adults with dementia. Keio J Med 2005; 54(2): 80-4.Google Scholar
  47. Larsson F, Winblad B, Mohammed AH. Psychological stress and environmental adaptation in enriched vs. Impoverished housed rats. Pharmacol Biochem Behav 2002; 73: 193-207.Google Scholar
  48. Nilsson L, Mohammed AKH, Henrikson BG, Winblad B, Bergström L. Influence of place learning on somatostatin levels in the rat brain following environmental deprivation. Regul Pept 1995; 58: 11-8.Google Scholar
  49. Engin E, Stellbrink J, Treit D, Dickson CT. Anxiolytic and antidepressant effects of intracerebroventricularly administered somatostatin: behavioral and neurophysiological evidence. Neuroscience 2008; 157(3): 666-76. Google Scholar
  50. Watanabe K, Tonosaki K, Kawase T, et al. Evidence for involvement of dysfunctional teeth in the senile process in the hippocampus of SAMP8 mice. Exp Gerontol 2001; 36: 283-95.Google Scholar
  51. Tsutsui K, Kaku M, Motokawa M, et al. Influences of reduced masticatory sensory input from soft-diet feeding upon spatial memory/learning ability in mice. Biomed Res 2007; 28: 1-7.Google Scholar
  52. Adam H, Preston, AJ. The oral health of individuals with dementia in nursing homes. Gerodontology 2006; 23: 99-105.Google Scholar
  53. Bergdahl M, Habib R, Bergdahl J, Nyberg L, Nilsson L Gr. Natural teeth and cognitive function in humans. Scand J Psychol 2007; 48: 557-65.Google Scholar
  54. Holm-Pedersen P, Schultz-Larsen K, Christiansen N, Avlund K. Tooth loss and subsequent disability and mortality in old age. J Am Geriatr Soc 2008; 56: 429-35.Google Scholar
  55. Yoneyama T, Yoshida M, Ohrui T, et al. Oral Care Working Group. Oral care reduces pneumonia in older patients in nursing homes. J Am Geriatr Soc 2002; 50: 430-33.Google Scholar
  56. Smits CH, de Lange J, Droes RM, Meiland F, Vernooij-Dassen M, Pot AM. Effects of Regular intervention programmes for people with dementia living at home and their caregivers: a systematic review. Int J Geriatr Psychiatry 2007; 22: 1181.Google Scholar
  57. Teri L, McCurry SM, Buchner DM, et al. Exercise and activity level in Alzheimer's disease: a potential treatment focus. J Rehabil Res Dev 1998; 35: 411-19.Google Scholar
  58. Teri L, Gibbons LE, McCurry S M, et al. Exercise plus behavioral management in patients with Alzheimer disease: a randomized controlled trial. JAMA 2003; 290: 2015-22.Google Scholar
  59. Seynnes O, Singh MAF, Hue O, Pras P, Legros P, Bernard PL. Physiological and functional responses to low-moderate versus high-intensity progressive resistance training in frail elders.J Gerontol A Biol Sci Med Sci 2004; 59: 503-9.Google Scholar
  60. Lazowski DA, Eccelestone NA, Myers AM, et al. A randomized outcome evaluation of group exercise programs in long-term care institutions. J Gerontol A Biol Sci Med Sci. 1999; 54: M621-28.Google Scholar
  61. De Carvalho Bastone A, Filho JW. Effect of an exercise program on functional performance of institutionalized elderly. J Rehabil Res Dev 2004; 41(5): 659-68.Google Scholar
  62. Rydwik E, Frandin K, Akner G. Physical training in institutionalized elderly people with multiple diagnoses--a controlled pilot study. Arch Gerontol Geriatr 2005; 40: 29-44.Google Scholar
  63. Beck J, Rohrer JD, Campbell T, et al. A distinct clinical, neuropsychological and radiological phenotype is associated with progranulin gene mutations in a large UK series. Brain 2008; 131: 706-20.Google Scholar
  64. Froelich-Fabre S, Skoglund L, Ostojic J, et al. Clinical and molecular aspects of frontotemporal dementia., 1 ed. Neurodegener Dis 2004;1(4-5): 218-24.Google Scholar
  65. Snowden JS, Stopford CL, Julien CL, et al. Cognitive phenotypes in Alzheimer's disease and genetic risk. Cortex 2007; 43: 835-45.Google Scholar

Copyright information

© Bohn Stafleu van Loghum 2009

Authors and Affiliations

  • E. Scherder
    • 1
  • L. Eggermont
  • W. Achterberg
  • B. Plooij
  • K. Volkers
  • R. Weijenberg
  • A. Hooghiemstra
  • A. E. Prick
  • M. Pieper
  • C. Blankevoort
  • S. Zwakhalen
  • M. J. G. van Heuvelen
  • J. Hamers
  • F. Lobbezoo
  • D. Swaab
  • A. M. Pot
  1. 1.

Personalised recommendations