Advertisement

Tijdschrift voor Kindergeneeskunde

, Volume 77, Issue 2, pp 52–58 | Cite as

Ontwikkelingen in de diagnostiek en behandeling van leukemie bij kinderen met downsyndroom

  • M. Blink
  • T. D. Buitenkamp
  • J. P. van Wouwe
  • E. R. van Wering
  • V. H. J. van der Velden
  • C. M. Zwaan
artikelen
  • 107 Downloads

Samenvatting

Kinderen met downsyndroom (DS) hebben een verhoogde kans op zowel acute myeloïde als acute lymfatische leukemie. Deze leukemieën verschillen in klinische karakteristieken en biologische eigenschappen vergeleken met leukemie bij kinderen zonder DS. Tevens hebben kinderen met DS een verhoogde kans op bijwerkingen van cytostatica, wat de behandeling bemoeilijkt. Myeloïde leukemie bij kinderen met DS (ML-DS) is een aparte ziekte-entiteit met specifieke kenmerken. Deze leukemiecellen zijn relatief gevoelig voor chemotherapie, wat dosisreductie mogelijk maakt. Dit leidt ook tot vermindering van toxiciteit, resulterend in een betere overleving vergeleken met kinderen met myeloïde leukemie zonder DS. Daarom is recentelijk een specifiek Europees behandelprotocol voor kinderen met ML-DS ontwikkeld. ML-DS kan voorafgegaan worden door een preleukemische ziektefase op zuigelingenleeftijd, ook wel transiënte leukemie genoemd (TL). TL gaat meestal spontaan in remissie, maar in geval van ernstige symptomatologie is behandeling noodzakelijk. Twintig procent van de TL-patiënten ontwikkelt myeloïde leukemie. Om de behandeling en overleving van kinderen met TL te verbeteren, en om te bestuderen of transitie naar ML-DS voorkomen kan worden met tijdige behandeling van TL, is in Nederland recent een studie- en behandelprotocol gestart. DSALL- patiënten hebben in tegenstelling tot ML-DS-patiënten geen betere prognose dan ALL-patiënten zonder DS. Ook bij DS-ALL verschillen de biologische karakteristieken van non-DS-ALL, maar de leukemische blasten zijn niet gevoeliger voor chemotherapie, zodat dosisreductie niet standaard wordt toegepast. Omdat DS-ALL-patiënten meer toxiciteit ervaren in het huidige SKION-ALL10-behandelprotocol, zijn aanpassingen in de behandeling van DS-ALL-kinderen doorgevoerd.

Summary

Children with Down syndrome (DS) have an increased risk for developing both acute myeloid as well as acute lymphoblastic leukemia. These leukemias differ in clinical characteristics and biology compared to leukemias in non-DS children. Moreover, children with DS have an increased risk of side-effects from cytostatic therapy, which complicates their treatment. Myeloid leukemia in children with DS (ML-DS) is a unique disease entity. ML-DS blasts are relatively sensitive to chemotherapy, which enables dosereductions. This also leads to a decrease in toxicity; together resulting in improved outcome compared to AML in non-DS children. Therefore, a European treatment protocol specifically for MLDS was recently implemented. ML-DS is often preceded by a preleukemic clone in newborns (transient leukemia: TL), which in most cases resolves spontaneously. However, in case of severe symptoms treatment is indicated. Twenty percent of TL patients subsequently develop myeloid leukemia. To improve treatment and survival of children with TL, and to study if transition to ML-DS canbe prevented by early treatment in the TL phase, a nation-wide TL surveillance and treatment protocol has been opened in the Netherlands recently. The prognosis of DS-ALL patients is at best similar to non-DS-ALL patients. The biological characteristics of leukemic lymphoblasts differ between DS-ALL and non-DS-ALL. DS-ALL lymphoblasts do not have increased sensitivity to chemotherapy compared to non-DS lymphoblasts. Therefore dose-reduction should only be considered in case of unacceptable toxicity. Recent findings suggest that DS-ALL patients experience excessive toxicity during the current DCOG ALL10-protocol. Hence, adjustments in the treatment protocol for DS-ALL patients were made.

Literatuur

  1. 1.
    Krivit W, Good RA. The simultaneous occurrence of leukemia and mongolism; report of four cases. AMA J Dis Child. 1956;91:218-22.Google Scholar
  2. 2.
    Hasle H, Clemmensen IH, Mikkelsen M. Risks of leukaemia and solid tumours in individuals with Down’s syndrome. Lancet. 2000;355:165-9.Google Scholar
  3. 3.
    Massey GV, Zipursky A, Chang MN, et al. A prospective study of the natural history of transient leukemia (TL) in neonates with Down syndrome (DS): Children’s Oncology Group (COG) study POG 9481. Blood. 2006;107:4606-13.Google Scholar
  4. 4.
    Moricke A, Zimmerman M, Schwarz C, et al. Excellent event-free survival despite higher incidence of treatment related toxicity and mortality in Down syndrome patients with acute lymphoblastic leukemia as compared to patients without Down syndrome: data form the ALL-BFM 2000 trial. 5th Bi-annual Symposium on Childhood Leukemia. Noordwijkerhout, 2006. Poster 18, p. 45.Google Scholar
  5. 5.
    Bassal M, La MK, Whitlock JA, et al. Lymphoblast biology and outcome among children with Down syndrome and ALL treated on CCG-1952. Pediatr Blood Cancer. 2005;44:21-8.Google Scholar
  6. 6.
    Zwaan CM, Kaspers GJL, Pieters R, et al. Different drug sensitivity profiles of acute myeloid and lymphoblastic leukemia and normal peripheral blood mononuclear cells, in children with and without Down syndrome. Blood. 2002;99:245-51.Google Scholar
  7. 7.
    Kivivuori SM, Rajantie J, Siimes MA. Peripheral blood cell counts in infants with Down’s syndrome. Clin Genet. 1996;49:15-9.Google Scholar
  8. 8.
    Klusmann JH, Creutzig U, Zimmermann M, et al. Treatment and prognostic impact of transient leukemia in neonates with Down syndrome. Blood. 2008;111:2991-8.Google Scholar
  9. 9.
    Hitzler JK, Cheung J, Li Y, et al. GATA1 mutations in transient leukemia and acute megakaryoblastic leukemia of Down syndrome. Blood. 2003;101: 4298-300.Google Scholar
  10. 10.
    Zeller B, Gustafsson G, Forestier E, et al. Acute leukaemia in children with Down syndrome: a population-based Nordic study. Br J Haemotol. 2005;128:797-804.Google Scholar
  11. 11.
    Creutzig U, Ritter J, Vormoor J, et al. Myelodysplasia and acute myelogenous leukemia in Down’s syndrome. A report of 40 children of the AML-BFM Study Group. Leukemia. 1996;10:1677-86.Google Scholar
  12. 12.
    Hitzler JK, Zipursky A. Origins of leukemia in children with Down syndrome. Nat Rev Cancer. 2005;5:11-20.Google Scholar
  13. 13.
    Li Z, Godinho FJ, Klusmann JH, et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet. 2005;37:613-9.Google Scholar
  14. 14.
    Mundschau G, Gurbuxani S, Gamis AS, et al. Mutagenesis of GATA1 is an initiating event in Down syndrome leukemogenesis. Blood. 2003; 101:4301-4.Google Scholar
  15. 15.
    Ravindranath Y, Abella A, Krischer JP, et al. Acute myeloid leukemia (AML) in Down’s syndrome is highly responsive to chemotherapy: experience on Pediatric Oncology Group AML study 8498. Blood. 1992;80:2210-4.Google Scholar
  16. 16.
    Lie SO, Jonmundsson G, Mellander L, et al.; Nordic Society of Paediatric Haemotology and Oncology (NOPHO). A population based study of 272 children with acute myeloid leukaemia treated on two consecutive protocols with different intensity: best outcome in girls, infants, and children with Down’s syndrome. Br J Haematol. 1996; 94:82-8.Google Scholar
  17. 17.
    Creutzig U, Reinhardt D, Diekamp S, et al. AML patients with Down syndrome have a high cure rate with AML-BFM therapy with reduced dose intensity. Leukemia. 2005;19:1355-60.Google Scholar
  18. 18.
    Rao A, Hills RK, Stiller C, et al. Treatment for myeloid leukemia of Down syndrome: population-based experience in the UK and results from the Medical Research Council AML 10 and AML 12 trials. Br J Haematol. 2006;132:576-83.Google Scholar
  19. 19.
    Gamis AS, Woods WG, Alonzo TA, et al. Increased age at diagnosis has a significantly negative effect on outcome in children with Down syndrome and acute myeloid leukemia: a report from the Children’s Cancer Group Study 2891. J Clin Oncol. 2003;21:3415-22. Google Scholar
  20. 20.
    Ravindranath Y. Down syndrome and acute myeloid leukemia: the paradox of increased risk for leukemia and heightened sensitivity to chemotherapy. J Clin Oncol. 2003;21:3385-7.Google Scholar
  21. 21.
    Taub JW, Stout ML, Buck SA, et al. Myeloblasts from Down syndrome children with acute myeloid leukemia have increased in vitro sensitivity to cytosine arabinoside and daunorubicin. Leukemia. 1997;11:1594-5. Google Scholar
  22. 22.
    Frost BM, Gustafsson G, Larsson R, et al. Cellular cytotoxic drug sensitivity in children with acute leukemia and Down’s syndrome: an explanation to differences in clinical outcome? Leukemia. 2000;14:943-4. Google Scholar
  23. 23.
    Zwaan CM, Reinhardt D, Hitzler J, et al. Acute leukemias in children with Down syndrome. Pediatr Clin North Am. 2008;55:53-70.Google Scholar
  24. 24.
    Forestier E, Izraeli S, Beverloo B, et al. Cytogenetic features of acute lymphoblastic and myeloid leukemias in pediatric patients with Down syndrome: an iBFM-SG study. Blood. 2008;111:1575-83.Google Scholar
  25. 25.
    Whitlock JA, Sather HN, Gaynon P, et al. Clinical characteristics and outcome of children with Down syndrome and acute lymphoblastic leukemia: a children’s cancer group study. Blood. 2005;106:4043-9. Google Scholar
  26. 26.
    Steiner M, Attarbaschi A, Konig M, et al. Equal frequency of TEL/AML rearrangements in children with acute lymphoblastic leukemia with and without Down syndrome. Pediatr Hematol Oncol. 2005;22:229-34.Google Scholar
  27. 27.
    Pui CH, Raimondi SC, Borowitz MJ, et al. Immunophenotypes and karyotypes of leukemic cells in children with Down syndrome and acute lymphoblastic leukaemia. J Clin Oncol. 1993;11:1361-7.Google Scholar
  28. 28.
    Dördelmann M, Schrappe M, Reiter A, et al.; Berlin-Frankfurt-Münster Group. Down’s syndrome in childhood acute lymphoblastic leukemia: clinical characteristics and treatment outcome in four consecutive BFM trials. Leukemia. 1998;12:645-51.Google Scholar
  29. 29.
    Rajantie J, Siimes MA. Long-term prognosis of children with Down’s syndrome and leukaemia: a 34-year nation-wide experience. J Intellect Disabil Res. 2003;47:617-21.Google Scholar
  30. 30.
    Chessels JM, Harrison G, Richards SM. Down’s syndrome and acute lymphoblastic leukemia: clinical features and response to treatment. Arch Dis Child. 2001;85:321-5.Google Scholar
  31. 31.
    Stanulla M, Cario G, Meissner B, et al. Integrating molecular information into treatment of childhood acute lymphoblastic leukemia – A perspective from the BFM Study Group. Blood Cells Mol Dis. 2007;39:160-3.Google Scholar
  32. 32.
    Bercovich D, Ganmore I, Scott LM, et al. Mutations of JAK2 in acute lymphoblastic leukaemias associated with Down’s syndrome. Lancet. 2008; 372:1484-92.Google Scholar
  33. 33.
    Pardanani A, Hood J, Lasho T. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia. 2007;21:1658-68.Google Scholar
  34. 34.
    Pardanani A. JAK2 inhibitor therapy in myeloproliferative disorders: rationale, preclinical studies and ongoing clinical trials. Leukemia. 2008; 22:23-30.Google Scholar
  35. 35.
    Propper DJ, McDonald AC, Man A, et al. Phase I and pharmacokinetic study of PKC412, an inhibitor of protein kinase C. J Clin Oncol. 2001;19:1485-92.Google Scholar
  36. 36.
    Garré ML, Relling MV, Kalwinsky D, et al. Pharmacokinetics and toxicity of methotrexate in children with Down syndrome and acute lymphocytic leukemia. J Pediatr. 1987;111:606-12.Google Scholar
  37. 37.
    Whitlock JA. Down syndrome and acute lymphoblastic leukaemia. Br J Haematol. 2006;135:595-6.Google Scholar

Copyright information

© Bohn Stafleu van Loghum 2009

Authors and Affiliations

  • M. Blink
    • 1
  • T. D. Buitenkamp
  • J. P. van Wouwe
  • E. R. van Wering
  • V. H. J. van der Velden
  • C. M. Zwaan
  1. 1.

Personalised recommendations