Skip to main content
Log in

Regenerative cell therapy and pharmacotherapeutic intervention in heart failure

Part 2: Pharmacological targets, agents and intervention perspectives

  • review article
  • Published:
Netherlands Heart Journal Aims and scope Submit manuscript

Abstract

Regenerative medicine represents a promising perspective on therapeutic angiogenesis in patients with cardiovascular disease, including heart failure. However, previous or ongoing clinical trials show ambiguous outcomes with respect to the benefit of regenerative therapy by means of bone marrow stem cell infusion in myocardial infarction patients. Therefore, it is necessary to set up a rational therapeutic strategy in the treatment of congestive heart failure. Chemokines, cytokines and growth factors, as well as pharmaceutical agents, may have an impact on endothelial progenitor cell (EPC) physiology and thus can provide targets for pharmacological intervention. Indeed, EPCs and stem cell niches both in bone marrow and myocardial tissue can be treated as an integral target for recruitment of EPCs from the bone marrow to the cardiac ischaemic niche. In this article, we individually place the signalling factors in their specified context, and explain their roles in the various phases of neovascularisation (see Part 1). (Neth Heart J 2008;16:337-43.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Semenza GL. Development of novel therapeutic strategies that target HIF-1. Expert Opin Ther Targets 2006;10:267-80.

    Google Scholar 

  2. Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004;10:858-64.

    Google Scholar 

  3. Rajagopalan S, Olin J, Deitcher S et al. Use of a constitutively active hypoxia-inducible factor-1alpha transgene as a therapeutic strategy in no-option critical limb ischemia patients: phase I dose-escalation experience. Circulation 2007; 115:1234-43.

    Google Scholar 

  4. Jiang M, Wang B, Wang C, et al. Angiogenesis by transplantation of HIF-1alpha modified EPCs into ischemic limbs. J Cell Bio chem 2008;103:321-34.

    Google Scholar 

  5. Walter DH, Haendeler J, Reinhold J, et al. Impaired CXCR4 signaling contributes to the reduced neovascularization capacity of endothelial progenitor cells from patients with coronary artery disease. Circ Res 2005;97:1142-51.

    Google Scholar 

  6. Kollet O, Dar A, Shivtiel S, et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006;12:657-64.

    Google Scholar 

  7. Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 2006;12:557-67.

    Google Scholar 

  8. van Weel V, Seghers L, de Vries MR, et al. Expression of vascular endothelial growth factor, stromal cell-derived factor-1, and CXCR4 in human limb muscle with acute and chronic ischemia. Arterioscler Thromb Vasc Biol 2007;27:1426-32.

    Google Scholar 

  9. Sano M, Minamino T, Toko H, et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload. Nature 2007;446:444-8.

    Google Scholar 

  10. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release ofkit-ligand. Cell 2002;109:625-37.

    Google Scholar 

  11. Kuhlmann MT, Kirchhof P, Klocke R, et al. G-CSF/SCF reduces inducible arrhythmias in the infarcted heart potentially via increased connexin43 expression and arteriogenesis. J Exp Med 2006;203:87-97.

    Google Scholar 

  12. Lehrke S, Mazhari R, Durand DJ, et al. Aging impairs the beneficial effect of granulocyte colony-stimulating factor and stem cell factor on post-myocardial infarction remodeling. Circ Res 2006;99:553-60.

    Google Scholar 

  13. Jeon O, Kang SW, Lim HW, et al. Synergistic effect of sustained delivery of basic fibroblast growth factor and bone marrow mono-nuclear cell transplantation on angiogenesis in mouse ischemic limbs. Biomaterials 2006;27:1617-25.

    Google Scholar 

  14. Atluri P, Liao GP, Panlilio CM, et al. Neovasculogenic therapy to augment perfusion and preserve viability in ischemic cardiomyo-pathy. Ann Thorac Surg 2006;81:1728-36.

    Google Scholar 

  15. Valgimigli M, Rigolin GM, Cittanti C, et al. Use of granulocyte-colony stimulating factor during acute myocardial infarction to enhance bone marrow stem cell mobilization in humans: clinical and angiographic safety profile. Eur Heart J 2005;26:1838-45.

    Google Scholar 

  16. Zohlnhofer D, Ott I, Mehilli J, et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 2006;295: 1003-10.

    Google Scholar 

  17. Presta M, Dell'Era P, Mitola S, et al. Fibroblast growth factor/ fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005;16:159-78.

    Google Scholar 

  18. Kanda S, Miyata Y, Kanetake H. Fibroblast growth factor-2-mediated capillary morphogenesis of endothelial cells requires signals via Flt-1/vascular endothelial growth factor receptor-1: possible involvement of c-Akt. J Biol Chem 2004;279:4007-16.

    Google Scholar 

  19. Ito T, Sawada R, Fujiwara Y, et al. FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem BiophysRes Commun 2007;359:108-14.

    Google Scholar 

  20. Fontaine V, Filipe C, Werner N, et al. Essential role of bone marrow fibroblast growth factor-2 in the effect of estradiol on re-endothelialization and endothelial progenitor cell mobilization. Am J Pathol 2006;169:1855-

    Google Scholar 

  21. Folkman J, Merler E, Abernathy C, et al. Isolation of a tumor factor responsible for angiogenesis. J Exp Med 1971;133:275-88.

    Google Scholar 

  22. Gerhardt H, Golding M, Fruttiger M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003;161:1163-77.

    Google Scholar 

  23. Kaplan RN, Riba RD, Zacharoulis S, et al. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 2005;438:820-7.

    Google Scholar 

  24. Grunewald M, Avraham I, DorY, et al. VEGF-induced adult neo-vascularization: recruitment, retention, and role of accessory cells. Cell 2006;124:175-89.

  25. Li B, Sharpe EE, Maupin AB, et al. VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB J 2006;20:1495-7.

    Google Scholar 

  26. Ball SG, Shuttleworth CA, Kielty CM. Vascular endothelial growth factor can signal through platelet-derived growth factor receptors. J Cell Biol 2007;177:489-500.

    Google Scholar 

  27. Papapetropoulos A, Garcia-Cardena G, Madri JA, et al. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997;100:3131-9.

    Google Scholar 

  28. Thum T, Fraccarollo D, Galuppo P, et al. Bone marrow molecular alterations after myocardial infarction: Impact on endothelial progenitor cells. Cardiovasc Res 2006;70:50-60.

    Google Scholar 

  29. Aicher A, Heeschen C, Mildner-Rihm C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003;9:1370-6.

    Google Scholar 

  30. Imanishi T, Hano T, Nishio I. Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. J Hypertens 2005;23:1699-706.

    Google Scholar 

  31. Masuda H, Kalka C, Takahashi T, et al. Estrogen-mediated endothelial progenitor cell biology and kinetics for physiological postnatal vasculogenesis. Circ Res 2007;101:598-606.

    Google Scholar 

  32. Imanishi T, Hano T, Nishio I. Estrogen reduces angiotensin II-induced acceleration of senescence in endothelial progenitor cells. Hypertens Res 2005;28:263-71.

    Google Scholar 

  33. Hamada H, Kim MK, Iwakura A, et al. Estrogen receptors alpha and beta mediate contribution of bone marrow-derived endothelial progenitor cells to functional recovery after myocardial infarction. Circulation 2006;114:2261-70.

    Google Scholar 

  34. Fox KA, Steg PG, Eagle KA, et al. Decline in rates of death and heart failure in acute coronary syndromes, 1999-2006. JAMA 2007;297:1892-900.

    Google Scholar 

  35. O'Driscoll G, Green D, Taylor RR. Simvastatin, an HMG-co-enzyme A reductase inhibitor, improves endothelial function within 1 month. Circulation 1997;95:1126-31.

    Google Scholar 

  36. Dimmeler S, Aicher A, Vasa M, et al. HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 2001;108:391-7.

    Google Scholar 

  37. Assmus B, Urbich C, Aicher A, et al. HMG-CoA reductase inhibitors reduce senescence and increase proliferation of endothelial progenitor cells via regulation of cell cycle regulatory genes. Circ Res 2003;92:1049-55.

    Google Scholar 

  38. Spyridopoulos I, Haendeler J, Urbich C, et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 2004;110: 3136-42.

    Google Scholar 

  39. Landmesser U, Engberding N, Bahlmann FH, et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 2004;110:1933-9.

    Google Scholar 

  40. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med 2005;352: 20-8.

    Google Scholar 

  41. Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N EnglJ Med 2007;357:2248-61.

    Google Scholar 

  42. Heeschen C, Aicher A, Lehmann R, et al. Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 2003;102:1 340-6.

    Google Scholar 

  43. Rankin EB, Biju MP, Liu Q, et al. Hypoxia-inducible factor-2 (HIF-2) regulates hepatic erythropoietin in vivo. J Clin Invest 2007;1 17:1068-77.

    Google Scholar 

  44. Bullard AJ, Govewalla P, Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo. Basic Res Cardiol 2005;100:397-403.

    Google Scholar 

  45. Westenbrink BD, Lipsic E, van der Meer P, et al. Erythropoietin improves cardiac function through endothelial progenitor cell and vascular endothelial growth factor mediated neovascularization. Eur Heart J 2007;16:2018-27.

    Google Scholar 

  46. Bahlmann FH, De Groot K, Spandau JM, et al. Erythropoietin regulates endothelial progenitor cells. Blood 2004;103:921-6.

    Google Scholar 

  47. Nakano M, Satoh K, Fukumoto Y, et al. Important role of erythropoietin receptor to promote VEGF expression and angiogenesis in peripheral ischemia in mice. Circ Res 2007;100:662-9.

    Google Scholar 

  48. Sun Y, Calvert JW, Zhang JH. Neonatal hypoxia/ischemia is associated with decreased inflammatory mediators after erythropoietin administration. Stroke 2005;36:1672-8.

    Google Scholar 

  49. Lee MS, Lee JS, Lee JY. Prevention of erythropoietin-associated hypertension. Hypertension 2007;50:439-45.

    Google Scholar 

  50. Ferrario CM. Angiotensin-converting enzyme 2 and angiotensin-(1-7): an evolving story in cardiovascular regulation. Hypertension 2006;47:515-21.

    Google Scholar 

  51. Matsushita K, Wu Y, Okamoto Y, et al. Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes. Hypertension 2006;48:1095-102.

    Google Scholar 

  52. Imanishi T, Hano T, Nishio I. Angiotensin II potentiates vascular endothelial growth factor-induced proliferation and network formation of endothelial progenitor cells. Hypertens Res 2004;27: 101-8.

    Google Scholar 

  53. Matsushita K, Wu Y, Okamoto Y, et al. Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes. Hypertension 2006;48:1095-102.

    Google Scholar 

  54. Imanishi T, Moriwaki C, Hano T, et al. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens 2005;23:1831-7.

    Google Scholar 

  55. Ferrario CM, Jessup J, Gallagher PE, et al. Effects of renin-angio-tensin system blockade on renal angiotensin- (1-7) forming enzymes and receptors. Kidney Int 2005;68:2189-96.

    Google Scholar 

  56. Loot AE, Roks AJ, Henning RH, et al. Angiotensin-(1-7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 2002;105:1548-50.

    Google Scholar 

  57. Langeveld B, van Gilst WH, Tio RA, et al. Angiotensin-(1-7) attenuates neointimal formation after stent implantation in the rat. Hypertension 2005;45:1 38-41.

    Google Scholar 

  58. Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol 2005;289:H1560-6.

    Google Scholar 

  59. Ellefson DD, diZerega GS, Espinoza T, et al. Synergistic effects of co-administration of angiotensin 1-7 and Neupogen on hemato-poietic recovery in mice. Cancer Chemother Pharmacol 2004;53: 15-24.

    Google Scholar 

  60. Rodgers KE, Oliver J, diZerega GS. Phase I/II dose escalation study of angiotensin 1-7 [A(1-7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer. Cancer Chemother Pharmacol 2006;57:559-68.

    Google Scholar 

  61. Wang CH, Verma S, Hsieh IC, et al. Enalapril increases ischemia-induced endothelial progenitor cell mobilization through manipulation of the CD26 system. J Mol Cell Cardiol 2006;41:34-43.

    Google Scholar 

  62. Olivares EL, Costa-E-Sousa RH, Werneck-de-Castro JP et al. Cellular cardiomyoplasty in large myocardial infarction: Can the beneficial effect be enhanced by ACE-inhibitor therapy? Eur J Heart Fail 2007;9:558-67.

    Google Scholar 

  63. Bahlmann FH, De Groot K, Mueller O, et al. Stimulation of endothelial progenitor cells: a new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension 2005;45:526-9.

    Google Scholar 

  64. Yu Y, Fukuda N, Yao EH, et al. Effects of an ARB on Endothelial Progenitor Cell Function and Cardiovascular Oxidation in Hypertension. Am J Hypertens 2008;21:72-7.

    Google Scholar 

  65. Seeger FH, Tonn T, Krzossok N, et al. Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute myocardial infarction. Eur Heart J 2007;28:766-72.

    Google Scholar 

  66. Au P, Daheron LM, Duda DG, et al. Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels. Blood 2007;111:1302-5.

    Google Scholar 

  67. Wang ZZ, Au P, Chen T, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nat Biotechnol 2007;25:317-8.

    Google Scholar 

  68. Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006;355:1210-21. Netherlands Heart Journal, Volume 16, Number 10, October 2008

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. van Gilst.

Additional information

Department of Experimental Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands

Institue of Cardiovascular center, The Second Affiliated Hospital of Harbin Medical University, China

Department of Internal medicine, Division of Vascular Pharmacology & Metabolic Diseases, Erasmus MC, Rotterdam, the Netherlands

Correspondence to: W.H. van Gilst, Department of Experimental Cardiology, University Medical Center Groningen, University of Groningen, PO Box 30.001, 9700 RB Groningen, the Netherlands

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, C., Schoemaker, R.G., van Gilst, W.H. et al. Regenerative cell therapy and pharmacotherapeutic intervention in heart failure. NHJL 16, 337–343 (2008). https://doi.org/10.1007/BF03086175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03086175

Navigation