Advertisement

Neuropraxis

, Volume 11, Issue 2, pp 43–47 | Cite as

De aangepaste neuromusculaire dienst-regeling van het hemiplege loop-patroon: verandering en stabiliteit in de timing van spieractiviteit na een cva

  • Rob den Otter
Artikelen
  • 83 Downloads

Abstract

Voor lopen hebben we de activiteit van spieren nodig. Bij mensen die als gevolg van een cerebrovasculair accident (cva) problemen ondervinden met lopen zijn de spieren niet alleen verzwakt maar ook vaak op abnormale momenten in de loopcyclus actief. Recentelijk gepubliceerd onderzoek kan ons mogelijk iets leren over de oorzaken van deze afwijkende spieraanspanningspatronen en hun relatie met loopvaardigheidsherstel.

Literatuur

  1. Ada, L., Vattanasilp, W., O’Dwyer, N.J. & Crosbie, J. (1998). Does spasticity contribute to walking dysfunction after stroke? J Neurol Neurosurg Psychiatry, 64:628–35.Google Scholar
  2. Burridge, J.H., Wood, D.E., Taylor, P.N. & McLellan, D.L. (2001). Indices to describe different muscle activation patterns, identified during treadmill walking, in people with spastic drop-foot. Med Eng Phys, 23: 427–434.Google Scholar
  3. Buurke, J.H., Hermens, H.J., Roetenberg, D., Harlaar, J., Rosenbaum, D. & Kleissen, R.F. (2004). Influence of hamstring lengthening on muscle activation timing. Gait Posture, 20:48–53.Google Scholar
  4. Buurke, J.H., Hermens, H.J., Erren-Wolters, C.V. & Nene, A.V. (2005). The effect of walking aids on muscle activation patterns during walking in stroke patients. Gait Posture, 22:164–70.Google Scholar
  5. Buurke, J.H. (2005). Walking after stroke: coordination patterns & functional recovery. PhD thesis. Universiteit Twente.Google Scholar
  6. Chantraine, F., Detrembleur, C. & Lejeune, T.M. (2005). Effect of the rectus femoris motor branch block on post-stroke stiff-legged gait. Acta Neurol Belg, 105:171–7.Google Scholar
  7. Dietz, V. (2002). Proprioception and locomotor disorders. Nat Rev Neurosci, 3:781–790.Google Scholar
  8. Dietz, V. (2003). Spastic movement disorder: what is the impact of research on clinical practice? J Neurol Neurosurg Psychiatry, 2003;74:820–821.Google Scholar
  9. Duysens, J. & Van de Crommert, H.W. (1998). Neural control of locomotion; The central pattern generator from cats to humans. Gait Posture, 7:131–141.Google Scholar
  10. Duysens, J., Clarac, F. & Cruse, H. (2000). Load-regulating mechanisms in gait and posture: comparative aspects. [Review]. Physiol Rev, 80: 83’133.Google Scholar
  11. Faist, M., Ertel, M., Berger, W. & Dietz, V. (1999). Impaired modulation of quadriceps tendon jerk reflex during spastic gait: differences between spinal and cerebral lesions. Brain, 22:567–79.Google Scholar
  12. Gelfand, I.M. & Latash, M.L. (1998). On the problem of adequate language in motor control. Motor Control, 2:306–313.Google Scholar
  13. Geboers, J.F., Drost, M.R., Spaans, F., Kuipers, H. & Seelen, H.A. (2002). Immediate and long-term effects of ankle-foot orthosis on muscle activity during walking: a randomized study of patients with unilateral foot drop. Arch Phys Med Rehabil.,83:240–245.Google Scholar
  14. Hesse, S., Krajnik, J., Luecke, D., Jahnke, M.T., Gregoric, M. & Mauritz, K.H. (1996). Ankle muscle activity before and after botulinum toxin therapy for lower limb extensor spasticity in chronic hemiparetic patients. Stroke, 27:455–60.Google Scholar
  15. Hesse, S., Werner, C., Matthias, K., Stephen, K. & Berteanu, M. (1999). Non-velocity-related effects of a rigid double-stopped ankle-foot orthosis on gait and lower limb muscle activity of hemiparetic subjects with an equinovarus deformity. Stroke, 30:1855–61.Google Scholar
  16. Higginson, J.S., Zajac, F.E., Neptune, R.R., Kautz, S.A. & Delp, S.L. (2006). Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J Biomech., 39:1769–77.Google Scholar
  17. Hirschberg, G.G. & Nathanson, M. (1952). Electromyographic recording of muscular activity in normal and spastic gaits. Arch Phys Med Rehabil, 33: 217–224.Google Scholar
  18. Inman, V.T., Ralston, H.J. & Todd, F. (1981). Human walking. Baltimore, MD, Waverly press.Google Scholar
  19. Kerrigan, D.C., Gronley, J. & Perry J. (1991). Stiff-legged gait in spastic paresis. A study of quadriceps and hamstrings muscle activity. Am J Phys Med Rehabil., 70:294–300.Google Scholar
  20. Knutson, E. & Richards, C. (1979). Different types of disturbed motor control in gait of hemiparetic patients. Brain, 406: 373–378.Google Scholar
  21. Kwon, O.Y., Minor, S.D., Maluf, K.S. & Mueller, M.J. (2003). Comparison of muscle activity during walking in subjects with and without diabetic neuropathy. Gait Posture, 18:105–13.Google Scholar
  22. Lamontagne, A., Malouin, F. & Richards, C.L. (2001). Locomotor-specific measure of spasticity of plantarflexor muscles after stroke. Arch Phys Med Rehabil., 82:1696–704.Google Scholar
  23. Leroux, A., Fung, J. & Barbeau, H. (1999). Adaptation of the walking pattern to uphill walking in normal and spinal-cord injured subjects. Exp Brain Res., 126:359–168.Google Scholar
  24. Okamoto, T., Okamoto, K. & Andrew, P.D. (2003). Electromyographic developmental changes in one individual from newborn stepping to mature walking. Gait Posture, 17, 18–27.Google Scholar
  25. Den Otter, A.R., Geurts, A.C., Mulder, T. & Duysens, J. (2006). Gait recovery is not associated with changes in the temporal patterning of muscle activity during treadmill walking in patients with post-stroke hemiparesis. Clin Neurophysiol., 117:4–15.Google Scholar
  26. Den Otter, A.R., Geurts, A.C., Mulder, T., Duysens, J. Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait. In druk, Gait Posture.Google Scholar
  27. Peat, M., Dubo, H., Winter, D., Quanbury, A., Steinke, T. & Grahame, R. (1976). Electromyographic temporal analysis of gaitL Hemiparetic locomotion. Arch Phys Med Rehabil, 57: 421–425.Google Scholar
  28. Perry, J., Waters, R.L. & Perrin, T. (1978). Electromyographic analysis of equinovarus following stroke. Clin Orthop Rel Res, 131: 47–53.Google Scholar
  29. Perry, J. (1993). Determinants of muscle function in the spastic lower extremity. Clin Orthop Relat Res., 288:10–26.Google Scholar
  30. Perry, J., Burnfield, J.M., Gronley, J.K. & Mulroy, S.J. (2003). Toe walking: muscular demands at the ankle and knee. Arch Phys Med Rehabil, 84: 7–16.Google Scholar
  31. Perry, J. (1992). Gait Analysis Normal and Pathological Function. Slack, Inc, Thorofare, NJ.Google Scholar
  32. Shiavi, R., Bugle, H.J. & Limbird, T. (1987). Electromyographic gait assessment, Part 2: Preliminary assessment of hemiparetic synergy patterns. J Rehabil Res Dev, 24: 24–30.Google Scholar
  33. Sung, D.H. & Bang, H.J. (2000). Motor branch block of the rectus femoris: its effectiveness in stiff-legged gait in spastic paresis. Arch Phys Med Rehabil., 81:910–5.Google Scholar
  34. Van de Crommert, H.W., Mulder, T. & Duysens, J. (1998). Neural control of locomotion: sensory control of the central pattern generator and its relation to treadmill training. Gait Posture., 7:251–263.Google Scholar
  35. Vattanasilp, W., Ada, L. & Crosbie, J. (2000). Contribution of thixotropy, spasticity, and contracture to ankle stiffness after stroke. J Neurol Neurosurg Psychiatry., 69:34–39.Google Scholar
  36. Yelnik, A., Albert, T., Bonan, I. & Laffont, I. (1999). A clinical guide to assess the role of lower limb extensor overactivity in hemiplegic gait disorders. Stroke. 1999;30:580–585.Google Scholar

Copyright information

© Bohn Stafleu van Loghum 2007

Authors and Affiliations

  1. 1.

Personalised recommendations