Advertisement

Tijdschrift voor kindergeneeskunde

, Volume 70, Issue 6, pp 17–23 | Cite as

Afweerstoornissen als onderdeel van een syndroom

  • C. M. R. Weemaes
  • N. G. Hartwig
  • I. van der Burgt
Artikelen
  • 41 Downloads

Samenvatting

Bij een aantal immuundeficiënties zijn niet alleen de fagocyten of lymfocyten aangedaan, maar is de afweerstoornis onderdeel van een syndroom. Op de voorgrond staan hierbij combinaties met groeistoornissen, neurologische stoornissen, huid- en haarproblemen en gelaatsdysmorfieën. Een verhoogde gevoeligheid voor infecties is vaak niet manifest. Bij deze ziektebeelden is er meestal een verhoogde kans op ontwikkeling van een auto-immuunproces of kanker.

Summary

In ‘classical’ immunodeficiencies only the function of phagocytes or lymphocytes is disturbed. But the immunological defect can be part of a syndrome as well. Mostly the defect is combined with growth defect, neurological disturbances, skin or hair problems or facial dysmorphisms. The frequency or severity of infections are mostly not remarkable in these syndromes. The risk for development of autoimmune processes or cancer will be increased.

literatuur

  1. Driscoll DA, Spinner NB, Budarf ML, et al. Deletions and microdeletions of 22q11.2 in velo-cardio-facial syndrome. Am J Med Genet 1992;44:261-8.CrossRefPubMedGoogle Scholar
  2. DiGeorge AM. Discussions on a new concept of the cellular basis of immunology. J Pediatr 1965;67:907-8.CrossRefGoogle Scholar
  3. Grimbacher B, Holland SM, Gallin JI, et al. Hyper IgE syndrome with recurrent infections: an autosomal dominant multi-system disorder. N Engl J Med 1999;340:692-702.CrossRefPubMedGoogle Scholar
  4. Buckley RH, Sampson HA. The hyperimmunoglobulinemia E syndrome. In: Clinical immunology update. Amsterdam: Elsevier; 1981. p. 147-67.Google Scholar
  5. Smeets DFCM, Moog U, Weemaes CMR, et al. ICF syndrome, a new case and review of the literature. Hum Genet 1994;94:240-6.CrossRefPubMedGoogle Scholar
  6. Hansen RS, Wijmenga C, Luo P, et al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 1999;96:14412-17.CrossRefPubMedGoogle Scholar
  7. Weemaes CMR, Hustinx TWJ, Scheres JMJC, et al. A new chromosomal instability disorder: the Nijmegen Breakage Syndrome. Acta Paediatr Scand 1981;70:557-64.CrossRefPubMedGoogle Scholar
  8. The International Nijmegen Breakage Syndrome Study Group (Hiel J, Weemaes CM, et al.). Nijmegen breakage syndrome. Arch Dis Child 2000;82:400-6.Google Scholar
  9. Varon R, Vissinga Chr, Platzer M, et al. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen Breakage Syndrome. Cell 1998;93:467-76.CrossRefPubMedGoogle Scholar
  10. Taylor AMR, McConville CM, Woods GC, et al. Clinical and cellular heterogeneity in ataxia telangiectasia. In: Gatti RA, Painter RB (eds.). Ataxia telangiectasia. Berlin: Springer; 1993. p. 209-93.Google Scholar
  11. Weemaes CMR, The TH, Munster PJJ van, Bakkeren JAJM. Antibody responses in vivo in chromosome instability syndromes with immunodefiency. Clin Exp Immunol 1984;57:529-34.PubMedGoogle Scholar
  12. Savitsky K, Bar Shira A, Gilad S, et al. A single ataxia-telangiectasia gene with a product similar to PI-3 kinase. Science 1995;268:1749-53.CrossRefPubMedGoogle Scholar
  13. Burgt I van der, Haraldsson A, Oosterwijk JC, et al. Cartilage hair hypoplasia, metaphyseal chondrodysplasia type McKusick. Description of seven patients and review of the literature. Am J Med Genet 1991;41:371-80.CrossRefPubMedGoogle Scholar
  14. Ridanpaa M, Eenennaam H van, Pelin K, et al. Mutations in the RNA component of Rnase MRP cause a pleiotropic human disease, cartilage hair hypoplasia. Cell 2001;104:195-203.CrossRefPubMedGoogle Scholar
  15. German J. The immunodeficiency of Bloom syndrome. In: Ochs HD, Smith CIE, Puck JM (eds.). Primary immunodeficiency diseases. A molecular and genetic approach. Oxford: Oxford University Press; 1999. p. 355-8.Google Scholar
  16. Weemaes CMR, Bakkeren JAJM, Haraldsson A, Smeets DFCM. Immunological studies in Bloom's Syndrome: a follow-up report. Ann Genet 1991;34:201-5.PubMedGoogle Scholar
  17. Ochs HD, Rosen FS. The Wiskott Aldrich syndrome. In: Ochs HD, Smith CIE, Puck JM (eds.). Primary immunodeficiency diseases. A molecular and genetic approach. Oxford: Oxford University Press; 1999. p. 292-305.Google Scholar
  18. Aleman K, Noordzij JG, Groot R de, et al. Reviewing Omenn syndrome. Eur J Pediatr 2001;160:718-25.PubMedGoogle Scholar
  19. Spritz RA. Chediak Higashi syndrome. In: Ochs HD, Smith CIE, Puck JM (eds.). Primary immunodeficiency diseases. A molecular and genetic approach. Oxford: Oxford University Press; 1999. p. 389-96.Google Scholar
  20. Haraldsson A, Happle R, Bakkeren JAJM, Weemaes CMR. Griscelli's disease with cerebral involvement. Eur J Pediatr 1991;150:419-22.CrossRefPubMedGoogle Scholar
  21. Menasche G, Pastural E, Feldmann J, et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat Genet 2000;25:173-6.CrossRefPubMedGoogle Scholar
  22. Ming JE, Stiehm ER, Graham JM. Immunodeficiency as a component of recognizable syndromes. Am J Med Genet 1996;66:378-98.CrossRefPubMedGoogle Scholar

Copyright information

© Bohn Stafleu van Loghum 2002

Authors and Affiliations

  • C. M. R. Weemaes
    • 1
  • N. G. Hartwig
  • I. van der Burgt
  1. 1.

Personalised recommendations