Acta Physica Hungarica

, Volume 73, Issue 2–4, pp 165–173 | Cite as

Static anisotropic fluid spheres inD space-time dimensions

  • T. Harko


Using the Einstein field equations in the presence of a cosmological constant, the equations which describe the hydrostatic equilibrium of a static anisotropic fluid sphere are obtained inD (D≥4) space-time dimensions. With suitable transformations, the equation of mass-continuity and of hydrostatic equilibrium are given in a non-dimensional form. The formalism thus developed is used to study homogeneous charged fluid spheres in higher dimensions and for these configurations a complete solution is obtained.


Hydrostatic Equilibrium Einstein Field Equation Fluid Sphere Transversal Pressure Charged Fluid Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. L. Bowers and E. P. T. Liang, Astrophys. J.,188, 657, 1974.CrossRefADSGoogle Scholar
  2. 2.
    M. L. Bohra and A. L. Mehra, Gen. Rel. Grav.,2, 205, 1971.CrossRefADSGoogle Scholar
  3. 3.
    M. Omote and H. Sato, Gen. Rel. Grav.,5, 387, 1974.CrossRefADSGoogle Scholar
  4. 4.
    T. Singh, G. P. Singh and R. S. Srivastava, Int. J. Theor. Phys.,31, 545, 1992.CrossRefGoogle Scholar
  5. 5.
    G. Magli and J. Kijowski, Gen. Rel. Grav.,24, 139, 1992.CrossRefADSGoogle Scholar
  6. 6.
    K. D. Krori, P. Borgohain and K. Das, Gen. Rel. Grav.,21, 1099, 1989.CrossRefADSGoogle Scholar
  7. 7.
    P. S. Florides, Proc. R. Soc. London,A337,529, 1974.CrossRefADSGoogle Scholar
  8. 8.
    C. Wolf, Acta Phys. Hung.,70, 288, 1991.Google Scholar
  9. 9.
    C. Wolf, Can. J. Phys.,70, 249, 1992.Google Scholar
  10. 10.
    T. Harko, Acta Phys. Hung.,72, 251, 1992.Google Scholar
  11. 11.
    V. Ureche, Rev. Roum. de Phys.,25, 301, 1980.ADSGoogle Scholar
  12. 12.
    L. Landau and L. Lifschitz, Théorie des champs, Mir, Moscou, 1970.Google Scholar
  13. 13.
    L. Sokolowski, M. Litterio and F. Occhionero, Int. Center for Theor. Phys., Miramare, Trieste, Preprint No. IC/89, 199, 1989.Google Scholar

Copyright information

© Akadémiai Kiadó 1993

Authors and Affiliations

  • T. Harko
    • 1
  1. 1.Oncological InstituteClujRomania

Personalised recommendations