Advertisement

e & i Elektrotechnik und Informationstechnik

, Volume 120, Issue 9, pp 271–275 | Cite as

CMOS and SiGe bipolar circuits for applications up to 110 GHz

  • A. L. Scholtz
  • D. Kehrer
  • M. Tiebout
  • H. -D. Wohlmuth
  • H. Knapp
  • M. Wurzer
  • W. Perndl
  • M. Rest
  • C. Kienmayer
  • R. Thüringer
  • W. Bakalski
  • W. Simbürger
Originalarbeiten
  • 51 Downloads

Abstract

Recently, CMOS has been demonstrated to be a viable technology for very-high-bit-rate broad-band and wireless communication systems up to 40 Gb/s and 50 GHz. Advances in device scaling and doping-profile optimization have also resulted in SiGe bipolar transistors with impressive performance, including cut-off frequencies of more than 200 GHz. This paper presents advances in circuit design which fully exploit the high-speed potential of a 0.13 µm CMOS technology up to 50 GHz and of a high-performance SiGe bipolar technology up to 110 GHz operating frequency. The combination of advanced circuit techniques and a state-of-the-art fabrication-process technology results in continuing the upward shift of the frequency limits.

Keywords

CMOS circuits SiGe bipolar circuits frequency divider multiplexer demultiplexer voltage controlled oscillator 

Integrierte CMOS- und SiGe-Bipolarschaltungen für Anwendungen bis zu 110 GHz

Zusammenfassung

Es wurde vor kurzem gezeigt, dass integrierte Schaltungen für sehr schnelle Breitbanddienste und für Funkanwendungen in CMOS-Technologie Datenraten von 40 Gb/s sowie Betriebsfrequenzen von 50 GHz erreichen können. Fortschritte bei der Bauelemente-Skalierung und Optimierung der Dotierstoffprofile führten auch bei SiGe-Bipolartransistoren zu bemerkenswerten Leistungsmerkmalen, insbesondere zu Grenzfrequenzen über 200 GHz. In diesem Beitrag wird über neue Ergebnisse im Schaltungsentwurf berichtet, die das Leistungspotenzial einer 0,13 µm CMOS-Technologie bis zu 50 GHz und das einer ausgereiften SiGe-Bipolartechnologie bis zu 110 GHz Betriebsfrequenz nachweisen. Das Zusammenwirken von neuartigen Schaltungsentwürfen mit hoch entwickelten Herstellungstechnologien führt zu einer stetig steigenden maximalen Betriebsfrequenz der integrierten Schaltkreise.

Schlüsselwörter

CMOS-Schaltungen SiGe-Bipolarschaltungen Frequenzteiler Multiplexer Demultiplexer spannungsgesteuerter Oszillator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böck, J. et al. (2002): Sub 5ps SiGe bipolar technology. International electron devices meeting (IEDM), Dec.: 763–766.Google Scholar
  2. Kehrer, D. et al. (2003): 40-Gb/s 2:1 multiplexer and 1:2 demultiplexer in 120 nm standard CMOS. Int. Solid-State Circuits Conf., San Francisco, ISSCC, February 2003.Google Scholar
  3. Knapp, H. et al. (2002): 25 GHz static frequency divider and 25 Gb/s multiplexer in 0.12 µm CMOS. IEEE Int. Solid-State Circuits Conf. ISSCC 2002, San Francisco, Feb. 3–7: 302–303.Google Scholar
  4. Knapp, H. et al. (2003): 86 GHz static and 110 GHz dynamic frequency dividers in SiGe bipolar technology. International Microwave Symposium, IEEE, June 2003: 1067–1070.Google Scholar
  5. Krishnan, S. et al. (2002): 87 GHz static frequency divider in an InP-based Mesa DHBT technology. GaAs IC Symposium Digest. Oct.: 294–296.Google Scholar
  6. Kudszus, S. et al. (2000): 94/47-GHz regenerative frequency divider MMIC with low conversion loss. Solid State Circuits 35, Sept.: 1312–1317.CrossRefGoogle Scholar
  7. Mokhtari, M. et al. (2002): 100 + GHz static divide-by-2 circuit in InP-DHBT technology. GaAs IC Symposium Digest, Oct.: 291–294.Google Scholar
  8. Perndl, W. et al. (2003): A 98 GHz voltage controlled oscillator in SiGe bipolar technology. Bipolar/BiCMOS Circuits and Technology Meeting (BCTM), Sept. 2003.Google Scholar
  9. Rogers, J. et al. (2002): A 10 Gb/s CDR/DEMUX with LC delay line VCO in 0.18µm CMOS. IEEE International Solid-State Circuits Conf.: 254–255.Google Scholar
  10. Rylyakov, A. et al. (2003): 100 GHz dynamic frequency divider in SiGe bipolar technology. Electronics Letters, 39, Jan.: 217–218.CrossRefGoogle Scholar
  11. Rylyakov, A. et al. (2003): A 30 Gb/s 1:4 demultiplexer in 0.12 µm CMOS. Int. Solid-State Circuits Conf. San Francisco, ISSCC, February 2003.Google Scholar
  12. Schiml, T. et al. (2001): A 0.13 µm CMOS platform with Cu/Low-k interconnects for system on chip applications. VLSI Digest of Technical Papers, IEEE: 101–102.Google Scholar
  13. Tanabe, A. et al. (2001): 0.18 µm CMOS 10 Gb/s multiplexer/demultiplexer ICs using current mode logic with tolerance to threshold voltage fluctuation. IEEE J. Solid-State Circuits 36, June: 988–996.CrossRefGoogle Scholar
  14. Tiebout, M. et al. (2002): A 1 V 1 mW 51 GHz fully integrated VCO in standard CMOS. IEEE Int. Solid-State Circuits Conf., ISSCC 2002, San Francisco, Feb. 3–7: 300–301.Google Scholar
  15. Tsunashima, S. et al. (2002): 90 GHz operation of a novel dynamic frequency divider using InP /InGaAs HBTs. Indium Phosphide and Related Materials Conf. (IPRM), May: 43–46.Google Scholar
  16. Wang, Hong Mo (2001): A 50 GHz VCO in 0.25 µm CMOS. ISSCC01 Digest of Technical Papers, IEEE Int. Solid-State Circuits Conf., February: 372–373.Google Scholar
  17. Washio, K. et al. (2002): Optimization of characteristics related to the emitter-base junction in self-aligned SEG SiGe HBTs and their application in 72-GHz-static/92-GHz-dynamic frequency dividers. Trans. Electron Devices 49, Oct.: 1755–1760.CrossRefGoogle Scholar
  18. Wohlmuth, H.-D. et al. (2002): A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS. Europ. Solid-State Circuit Conf., Firenze, Italy, IEEE, September: 823–826.Google Scholar
  19. Wurzer, M. et al. (2002): 71.8 GHz static frequency divider in a Si/SiGe bipolar technology. Proc. of Bipolar/BiCMOS Circuits and Technology Meeting, IEEE, Sept.: Monterey, CA, USA, 216–219.Google Scholar

Copyright information

© Springer 2003

Authors and Affiliations

  • A. L. Scholtz
    • 1
  • D. Kehrer
    • 2
  • M. Tiebout
    • 2
  • H. -D. Wohlmuth
    • 2
  • H. Knapp
    • 2
  • M. Wurzer
    • 2
  • W. Perndl
    • 2
  • M. Rest
    • 2
  • C. Kienmayer
    • 2
  • R. Thüringer
    • 2
  • W. Bakalski
    • 2
  • W. Simbürger
    • 3
  1. 1.Institute for Communications and Radio Frequency EngineeringVienna University of TechnologyWien
  2. 2.Vienna University of Technology and Infineon Technologie AGAustria
  3. 3.Infineon Technologies AG, Corporate ResearchMünchen

Personalised recommendations