Advertisement

e&i Elektrotechnik und Informationstechnik

, Volume 122, Issue 9, pp 288–293 | Cite as

Visuelle Navigation für mobile Roboter mittels optoelektronischer Bestimmung des optischen Flusses

  • K. Janschek
  • V. Tchernykh
  • M. Beck
Originalarbeiten
  • 97 Downloads

Zusammenfassung

Das vorgeschlagene Navigationsverfahren löst das Problem der autonomen Echtzeitnavigation eines mobilen Roboters mit einer einzelnen Weitwinkelkamera als primären Sensor. Das grundlegende Prinzip besteht in der Nutzung des optischen Flusses und dessen Berechnung mit Hilfe eines eingebetteten optischen Korrelators. Die daraus gewonnenen Navigationsdaten dienen mit Hilfe einer zusätzlichen Odometriemessung sowohl einer kontinuierlichen Trajektorienschätzung als auch einer periodischen absoluten Lagebestimmung zur Verringerung der Schätzfehler. Im vorliegenden Beitrag werden das Systemkonzept erläutert, Schlüsselkomponenten des Verfahrens beschrieben und die Leistungsfähigkeit anhand von Simulationsergebnissen diskutiert.

Schlüsselwörter

optischer Fluss optische Rechner Lokalisierung Navigation mobile Robotik 

Visual navigation for mobile robots based on optoelectronic determination of optical flow

Abstract

The proposed navigation concept solves the problem of autonomous real time navigation of mobile robots with a single wide angle camera as primary perception sensor. The key feature of this navigation concept is the synergetic combination of the optical flow concept and a special computer hardware technology on the base of photonic computing using an advanced embedded optical correlator. The navigation information derived from the optical flow measurements is used for a high rate continuous trajectory estimation using auxiliary odometry data as well as for a periodic absolute navigation with sole optical flow data. The article presents the general system layout, describes the key components and discusses performance and simulation results.

Keywords

optical flow optical computing localization navigation mobile robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Barrows, G., Neely, C. (2000): Mixed-mode VLSI optic flow sensors for in-fight control of a micro air vehicle. proc. SPIE Vol. 4109, Critical Technologies for the Future of Computing: 52–63.Google Scholar
  2. Beck, M. (2004): Ein Navigationsverfahren für mobile Roboter unter Nutzung des Optischen Flusses. Dipl. Arbeit, Institut für Automation, TU Dresden.Google Scholar
  3. Bruhn, A., Weickert, J., Federn, C., Kohlberger, T., Schnörr, C. (2003): Real-time optic flow computation with variational methods. CAIP 2003, LnCS 2756: 222–229.Google Scholar
  4. Galvin, B., McCane, B., Novins, K., Mason, D., Mills, S. (1998): Recovering motion fields: an evaluation of eight optical flow algorithms. In: Proc. British Machine Vision Conference, Southampton, UK, 1998: 195–204.Google Scholar
  5. Giachetti, A., Campani, M., Torre, V. (1994): The use of optical flow for the autonomous navigation. In: Proc. 3rd European Conf. on Computer Vision 1, Stockholm, Sweden, 1994, pp. 146–151.Google Scholar
  6. Jutamulia, S. (1992): Joint transform correlators and their applications. Proc. SPIE, 1812 (1992), pp. 233–243.CrossRefGoogle Scholar
  7. McCane, B., Galvin, B., Novins, K. (1998): On the evaluation of optical flow algorithms. In: Proc. 5th Int. Conf. on Control, Automation, Robotics and Vision, Singapur, 1998, pp. 1563–1567.Google Scholar
  8. Tchernykh, V., Dyblenko, S., Janschek, K., Göhler, W., Harnisch, B. (2002): SmartScan-hardware test results for smart opto-electronic image correction for pushbroom cameras. In: (Barnes, W. L. Proc. of the SPIE, Earth Observing Systems VII, ed.), Vol. 4814, pp. 264–272.Google Scholar
  9. Tchernykh, V., Janschek, K., Dyblenko, S. (2000): Space application of a self-calibrating optical processor or harsh mechanical environment. Proc. 1st IFAC Conf. on Mechatronic Systems — Mechatronics 2000, September 18–20, 2000, Darmstadt, Germany. Pergamon-Elsevier Science, Vol. 3, pp. 309–314.Google Scholar
  10. Winters, N., Gaspar, J., Grossmann, E., Santos-Victor, J. (2001): Experiments in visual-based navigation with an omnidirectional camera. In: ICAR2001 Workshop on Omnidirectional Vision Applied to Robotic Orientation and Nondestructive Testing, Budapest, Hungary, 2001.Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • K. Janschek
    • 1
  • V. Tchernykh
    • 1
  • M. Beck
    • 1
  1. 1.Institut für AutomatisierungstechnikTechnische Universität DresdenDresdenDeutschland

Personalised recommendations