Skip to main content
Log in

Status and trends in modern micro- and nanotechnology

Aktueller Stand und Trends in der modernen Mikro- und Nanotechnologie

  • Originalarbeiten
  • Published:
e & i Elektrotechnik und Informationstechnik Aims and scope Submit manuscript

Abstract

The recent development from micro- to nanotechnology enables new ideas and new physical effects to be implemented in both conventional and novel devices. Examples of fast developing fields in this context are electronic, photonic and magnetic components for sensor, memory, and logic applications. Optical lithography, the traditional path of patterning, is supplemented with sophisticated methods to access the nanoworld.

Zusammenfassung

Die jüngste Entwicklung von der Mikro- zur Nanotechnologie bringt neue Ideen und neue physikalische Effekte hervor, welche sowohl in konventionellen als auch in neuartigen Bauteilen verwertet werden können. Beispiele sich schnell entwickelnder Felder sind in diesem Zusammenhang elektronische, photonische und magnetische Komponenten für Sensor-, Speicher- und Logikanwendungen. Die optische Lithographie als der traditionelle Weg zur Nanostrukturierung wird erweitert durch anspruchsvollere Methoden für den Zugang zur Nanowelt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Almeida, V. A., Xu, Q., Panepucci, R. R., Barrios, C. A., Lipson, M. (2004): Light guiding in low index materials using high-index-contrast waveguides. Mat. Res. Soc. Symp. Proc., Vol. 797: W6.10.

  • Barnes, W. L., Dereux. A., Ebbenden. T. W. (2003): Surface Plasmon subwavelength optics. Nature 424: 824–830.

    Article  Google Scholar 

  • Bhushan, B. (2004): Springer handbook of nanotechnology. Berlin: Springer.

    Google Scholar 

  • Brückl, H. (2005): Device concepts with magnetic tunnel junctions. In: Zschech, E., et al. (ed): Materials for information technology, devices and packaging: engineering materials and processes. Springer Press.

  • Brückl, H. (2004): Magnetoresistive logic and biochip. J. Magn. Magn. Mater. 282: 219.

    Article  Google Scholar 

  • Charlton, C., Temelkuran, B., Dellemann, G., Mizaikoff, B. (2005): Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow wave-guides. Appl. Phys. Lett. 86, 194102.

    Article  Google Scholar 

  • Chou, S. Y. (2001): Nano-imprint lithography and lithographically induced self-assembly. MRS Bulletin 26: 512–517.

    Article  Google Scholar 

  • Dresselhaus, M. S. et al. (2004): Nanowires. In: Bhushan, B. et al. (ed.): Springer handbook of nanotechnology. Berlin: Springer: 99–145.

    Google Scholar 

  • Gersen, H., Karle, T. J., Engelen, R. J. P., Bogaerts, W., Korterik, J. P., van Hulst, N. F., Krauss, T. F., Kuipers, L. (2005): Real-space observation of ultraslow light in photonic crystal waveguides. Phys. Rev. Lett. 94, 073903.

    Article  Google Scholar 

  • Gershenfeld, N., Chuang, I. (1997): Bulk spin-resonance quantum computation. Science 275: 350–356.

    Article  MathSciNet  Google Scholar 

  • International Technology Roadmap for Semiconductors (ITRS) 2004 (http://www.itrs.net/Common/2004Update/2004_07_Lithography.pdf/.)

  • Larsen, N. B., Biebuyck, H., Delamarche, E., Michel, B. (1997): Order in microcontact printed self-assembled monolayers, J. Am. Chem. Soc. 119: 3017–3026.

    Article  Google Scholar 

  • Liu, A., Samara-Rubio, D., Liao, L., Paniccia, M. (2005): Scaling the modulation bandwidth and phase efficiency of a silicon optical modulator. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 2: 367–372.

    Article  Google Scholar 

  • Loo, Y.-L., Willett, R. W., Baldwin, K., Rogers, J. A. (2002a): Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics. Appl. Phys. Lett. 81: 562–564.

    Article  Google Scholar 

  • Loo, Y.-L., Willett, R. W., Baldwin, K., Rogers, J. A. (2002b): Interfacial chemistries for nanoscale transfer printing. J. Am. Chem. Soc. 124: 7654–7655.

    Article  Google Scholar 

  • Loo, Y.-L., Hsu, J. W. P., Willett, R. L., Baldwin, K. W., West, K. W., Rogers, J. A. (2002c): High-resolution transfer printing on GaAs surfaces using alkane dithiol selfassembled monolayers. J. Vac. Sci. Technol. B. 20: 2853–2856.

    Article  Google Scholar 

  • Lloyd, S. (1995): Quantum-mechanical computers. Scientific American 273: 140–145.

    Article  Google Scholar 

  • Lutwyche, M., Andreoli, C., Binnig, G., Brugger, J., Drechsler, U., Haeberle, W., Rohrer, H., Rothuizen, H., Vettiger, P. (1998): Microfabrication and parallel operation of 5 × 5 2D AFM cantilever arrays for data storage and imaging. Proc. MEMS 98: 8–11.

    Google Scholar 

  • Michel, B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Renault, J. P., Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R., Wolf, H. (2001): Printing meets lithography: soft approaches to high-resolution printing. IBM J. Res. Dev. 45: 697–719.

    Article  Google Scholar 

  • Minne, S. C., Manalis, S. R., Atalar, A., Quate, C. F. (1996): Independent parallel lithography using the atomic force microscope. J. Vac. Sci. & Technol. B 14: 2456–2461.

    Article  Google Scholar 

  • Mirkin, C. A. (2001): Dip-pen nanolithography: automated fabrication of custom multicomponent, sub-100 nanometer surface architectures. MRS Bulletin 26: 535–538.

    Article  Google Scholar 

  • Rai-Choudhury, P. (ed.) (1997): Handbook of microlithography, micromachining and microfabrication (SPIE, Bellingham).

    Google Scholar 

  • Raymo, F. M. (2004): Nanomaterials synthesis and applications: molecule-based devices. In: Bhushan, B. et al.: Springer handbook of nanotechnology. Berlin: Springer: 9–38.

    Google Scholar 

  • Rogers, J. A., Jackman, R. J., Wagener, J. L., Vengsarkar, A. M., Whitesides, G. M. (1997): Using microcontact printing to generate photomasks on the surface of optical fibers: a new method for producing in-fiber gratings. Appl. Phys. Lett. 70: 7–9.

    Article  Google Scholar 

  • Rong, H., Jones, R., Liu, A., Cohen, O., Hak, D., Fang, A., Paniccia, M. (2005): A continuous-wave Raman silicon laser. Nature 433: 725–728.

    Article  Google Scholar 

  • Sohn, L. L., Willett, R. L. (1995): Fabrication of nanostructures using atomic-force-microscope-based lithography. Appl. Phys. Lett. 67: 1552–1554.

    Article  Google Scholar 

  • Tsuchizawa, T., Yamada, K., Fukuda, H., Watanabe, T., Takahashi, J., Takahashi, M., Shoji, T., Tamechika, E., Itabashi, S., Morita, H. (2005): Microphotonics devices based on silicon microfabrication technology. IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1: 232–240.

    Article  Google Scholar 

  • Vlasov, Y. A., McNab, S. J. (2004): Losses in single-mode silicon-oninsultor strip waveguides and bends. Optics Express, Vol. 12, No. 8: 1622–1631.

    Article  Google Scholar 

  • Wu, L., Mazilu, M., Karle, T., Krauss, T. F. (2002): Superprism phenomena in planar photonic crystals. IEEE Journal of Quantum Electronics, Volume 38, Issue 7: 915–918.

    Article  Google Scholar 

  • Xia, Y., Whitesides, G. M. (1998): Soft lithography. Angew. Chem. Int. Ed. 37: 550–575.

    Article  Google Scholar 

  • Xia, Y., Rogers, J. A., Paul, K. E., Whitesides, G. M. (1999): Unconventional methods for fabricating and patterning nanostructures. Chem. Rev. 99: 1823–1848.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Brückl Univ.-Doz. Dr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brückl, H., Hainberger, R., Heer, R. et al. Status and trends in modern micro- and nanotechnology. Elektrotech. Inftech. 122, 442–445 (2005). https://doi.org/10.1007/BF03054375

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03054375

Keywords

Schlüsselwörter

Navigation