Acta Physica Hungarica

, Volume 70, Issue 1–2, pp 83–90 | Cite as

Effect of crossed electric and magnetic fields on the gate capacitance in n-channel inversion layers of Kane-type semiconductors

  • K. P. Ghatak
  • S. Bhattacharyya
  • S. N. Biswas
Condensed Matter


We study the effect of cross-field configuration on the gate capacitance inn-channel inversion layers of Kane-type semiconductors by formulating the model expression within the framework of K·p formalism. It is found, takingn-channel inversion layers on CdGeAs2 as example, that the gate capitances oscillate with inverse quantizing magnetic field, increase with increasing surface fields and are in agreement with the experimental data, as reported elsewhere. The corresponding results for three band Kane model, two-band Kane model and that of parabolic energy band have been obtained as special cases of the generalized expressions.


Landau Level Inversion Layer Gate Capacitance Kane Model Surface Electric Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando, A. H. Fowler and F. Stern, Rev. Mod. Phys.,54, 437, 1982.CrossRefADSGoogle Scholar
  2. 2.
    M. Kaplit and Z. M. Zemel, Surf. Sci.,13, 17, 1969.CrossRefADSGoogle Scholar
  3. 3.
    A. S. Grove and D. J. Fitzgerald, Solid State Electronics,9, 783, 1966.CrossRefADSGoogle Scholar
  4. 4.
    K. P. Ghatak and A. Ghoshal, Phys. Stat. Sol. (b),151, K135, 1989.CrossRefGoogle Scholar
  5. 5.
    B. Mitra, A. Ghoshal and K. P. Ghatak, Phys. Stat. Sol. (b),153, K209, 1989.CrossRefGoogle Scholar
  6. 6.
    D. R. Choudhury, A. K. Choudhury and A. N. Chakravarti, Phys. Stat. Sol. (a),59, K69, 1980.CrossRefGoogle Scholar
  7. 7.
    K. P. Ghatak and M. Mondal, J. Appl. Phys.,918, 64, 1988.Google Scholar
  8. 8.
    G. D. Boyd, E. Buchler and F. G. Storz, Appl. Phys. Letts.,18, 301, 1971.CrossRefADSGoogle Scholar
  9. 9.
    J. L. Shay, K. J. Backman, E. Buchler and J. H. Wernick, Appl. Phys. Letts.,23, 226, 1973.CrossRefADSGoogle Scholar
  10. 10.
    J. E. Rowe and J. L. Shay, Phys. Rev.,3B, 451, 1971.ADSGoogle Scholar
  11. 11.
    J. J. Hopfield, J. Phys., Chem. Solids,15, 97, 1960.CrossRefADSGoogle Scholar
  12. 12.
    S. I. Radaustsan, E. A. Arushanov, E. A. Nateprov and G. P. Chuiko, Cadmium Arsenide and Phosphide, Nauka Press, USSR, 1986.Google Scholar
  13. 13.
    H. Kildal and J. C. Mikkelsen, Opt. Commun.,10, 123, 1972.Google Scholar
  14. 14.
    H. Kildal, Phys. Rev.,10B, 5082, 1974.ADSGoogle Scholar
  15. 15.
    V. A. Viltkoskii, D. S. Domanevskii, R. D. Kakanokov and V. V. Krasovaskii, Sov. Phys. Semicond.,13, 553, 1979.Google Scholar
  16. 16.
    W. Zawadzki and B. Lax, Phys. Rev, Letts.,16, 1001, 1966.CrossRefADSGoogle Scholar

Copyright information

© Akadémiai Kiadó 1991

Authors and Affiliations

  • K. P. Ghatak
    • 1
  • S. Bhattacharyya
    • 2
  • S. N. Biswas
    • 3
  1. 1.Department of Electronics and Telecommunication Engineering Faculty of Engineering and TechnologyUniversity of JadavpurCalcuttaIndia
  2. 2.I. T. C. LimitedCalcuttaIndia
  3. 3.Department of Electronics and Telecommunication EngineeringBengal Engineering CollegeShibpurIndia

Personalised recommendations