Acta Physica Hungarica

, Volume 65, Issue 1, pp 109–113 | Cite as

On the stability of shear flow

  • Nguyen Thi Bang Van
Classical and Applied Physics


We prove that the shear flow of the corotational Jeffrey body is unstable if the shear stress function is decreasing at the actual shear rate.


Shear Rate Stationary Solution Shear Flow Symmetric Part Viscoelastic Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Verhás, Acta Mechanica (Vienna),53, 125, 1984.MATHCrossRefGoogle Scholar
  2. 2.
    J. Verhás, Thermodynamics and Rheology (in Hungarian), Technical Publishing House, Budapest, 1985.Google Scholar
  3. 3.
    I. Gyarmati, Non-equilibrium Thermodynamics, Field Theory and Variational Principles, Springer, Berlin, Heidelberg, New York, 1970.Google Scholar
  4. 4.
    S.R. de Groot and P. Mazur, Non-equilibrium Thermodynamics, North-Holland Publ. Co., Amsterdam, 1962.Google Scholar
  5. 5.
    L.S. Pontryagin, Ordinary Differential Equations, Akadémiai Kiadó, (Publishing House of Hungarian Academy of Sciences) Budapest, 1972.Google Scholar
  6. 6.
    M. Slemrod, Shear Flows of Non-linear Viscoelastic Fluids, in: Trends in Applications of Pure Mathematics to Mechanics, Ed. by E. Kröner and K. Kirchgassner, Springer, Berlin, Heidelberg, New York, Tokyo, 1986.Google Scholar
  7. 7.
    J. Verhás, Int. J. Heat Mass Transfer,30, 1001, 1987.MATHCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó 1989

Authors and Affiliations

  • Nguyen Thi Bang Van
    • 1
  1. 1.Institute of PhysicsTechnical UniversityBudapestHungary

Personalised recommendations