Proceedings: Plant Sciences

, Volume 95, Issue 6, pp 429–436 | Cite as

Ontogeny of palmately compound leaves in angiosperms: 1.Tabebuia pentaphylla Hense

  • K Periasamy
  • E A Muruganathan


The palmately compound leaf ofTabebuia pentaphylla is initiated by periclinal division in the hypodermal layer at the flank of the maximal shoot apex, which lacks cytohistological zonation. The growth of the leaf primordium is diffuse until it reaches a height of 50–60 μm after which an adaxial meristem makes it conspicuously thick at the basal region. The first pair of lateral leaflets arise about 50 μm below the tip of the leaf primordium when the latter is about 150 μm high and before the differentiation of a well defined marginal meristem. The second pair of leaflets arises subsequently below the first. The terminal portion becomes the central leaflet. The sites of leaflet initiation are the terminal endings of acropetally differentiating procambial strands. The 6-layered plate meristem of the leaflet lamina arises from a marginal meristem whose submarginal initial is wedge shaped. Leaflet venation is comptodromous and the ultimate areoles lack free vein endings.


Tabebuia pentaphylla leaf ontogeny palmately compound leaf shoot apex dicot leaf ontogeny 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arber A 1918 The phyllode theory of the monocotyledonous leaf, with special reference to anatomical evidence;Ann. Bot. 32 465–501Google Scholar
  2. Avery G S Jr 1933 Structure and development of the tobacco leaf;Am. J. Bot. 20 565–592CrossRefGoogle Scholar
  3. Boke N 1940 Histogenesis and morphology of the phyllode in certain species ofAcacia;Am. J. Bot. 27 73–90CrossRefGoogle Scholar
  4. Coleman W K and Greyson R I 1976 The growth and development of the leaf in tomato (Lycopersicon esculentum) II. Leaf ontogeny;Can. J. Bot. 54 2704–2717CrossRefGoogle Scholar
  5. Denne M P 1966 Leaf development inTrifolium repens;Bot. Gaz. 127 202–210CrossRefGoogle Scholar
  6. Eames A J 1953 Neglected morphology of the palm leaf;Phytomorphology 3 172–189Google Scholar
  7. Eames A J 1961Morphology of the Angiosperms (New York: McGraw-Hill)Google Scholar
  8. Foster A S 1936 Leaf differentiation in angiosperms;Bot. Rev. 2 349–372CrossRefGoogle Scholar
  9. Hagemann W 1970 Studien zur Entwicklungsgeschichte der Angiospermenblatter;Bot. Jb. 90 297–413Google Scholar
  10. Henslow G 1911 The origin of monocotyledons from dicotyledons through self-adaptation to a moist or aquatic habit;Ann. Bot. 25 717–744Google Scholar
  11. Kaplan D R 1970a Comparative foliar histogenesis inAcorus calamus and its bearing on the phyllode theory of monocotyledonous leaves;Am. J. Bot. 57 331–361CrossRefGoogle Scholar
  12. Kaplan D R 1970b Comparative development and morphological interpretation of “rachis-leaves” in Umbelliferae; inNew Research in Plant Anatomy, (eds) N K B Robson, D F Cutter and M GregorySuppl. I. Bot. J. Linn. Soc. London 63 101–125Google Scholar
  13. Knoll F 1948 Bau. Entwicklung und morphologische Bedeutung unifazialer Vorlauferspitzen an Monokotylenblattern;Oesterr. Bot. Z. 95 163–193CrossRefGoogle Scholar
  14. Maksymowych R and Wochok Z S 1969 Activity of marginal and plate meristems during leaf development ofXanthium pennsylvanicum;Am. J. Bot. 56 26–30CrossRefGoogle Scholar
  15. Merril E K 1979 Comparison of ontogeny of three types of leaf architecture inSorbus L;Bot. Gaz. 140 328–337CrossRefGoogle Scholar
  16. Muruganathan E A 1982A comparative study of the ontogeny of non-palm compound leaves in monocotyledons and that of a dicotyledon, Ph.D. thesis, University of Madras, MadrasGoogle Scholar
  17. Periasamy K 1965 Morphological and ontogenetic studies in palms II. Growth pattern of the leaves ofCocos nucifera andBorassus flabellifer after the initiation of plications;Aust. J. Bot. 13 225–234Google Scholar
  18. Periasamy K 1967 Morphological and ontogenetic studies in palms: V. Early ontogeny and vascular architecture of the leaf ofRhapis flabelliformis;Aust. J. Bot. 15 151–159CrossRefGoogle Scholar
  19. Periasamy K 1983 Apical growth in plants;SBCl News Lett. 2 40–52Google Scholar
  20. Periasamy K and Swamy B G L 1964 Is the microsporangium of angiosperms wall-less?Curr. Sci. 33 735–738Google Scholar
  21. Ramji M V 1961 Histogenesis of the venation pattern in the leaves ofPolyathia longifolia;Proc. Indian Acad. Sci. B53 98–106Google Scholar
  22. Roth R M 1949 Zur Entwicklungsgeschichte des Blattes, mit besonderer Berucksichtigung von Stipular und Ligularbildungen;Planta 37 299–336CrossRefGoogle Scholar
  23. Sporne K R 1974The Morphology of Angiosperms (London: Hutchinson and Co. Ltd)Google Scholar
  24. Thielke C 1948 Beitrage zur Entwicklungsgeschichte und zur Physiologie panaschierter Blatter;Planta 36 2–33CrossRefGoogle Scholar
  25. Wilder G J 1976 Structure and development of leaves inCarludovica palmata (Cyclanthaceae) with reference to other Cyclanthaceae and Palmae;Am. J. Bot. 63 1237–1256CrossRefGoogle Scholar
  26. Wilder G J 1981 Structure and development ofCyclanthus bipartitus with reference to other Cyclanthaceae. II Adult leaf;Bot. Gaz. 142 222–236CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • K Periasamy
    • 1
  • E A Muruganathan
    • 1
  1. 1.Department of BotanyBharathidasan UniversityTiruchirapalliIndia

Personalised recommendations