Advertisement

Model independent features of the two-particle correlation function

  • Scott Chapman
  • Pierre Scotto
  • Ulrich Heinz
Article
  • 31 Downloads

Abstract

The Hanbury-Brown Twiss correlation function for two identical particles is studied for systems with cylindrical symmetry. Its shape for small values of the relative momentum is derived in a model independent way. In addition to the usual quadratic “side”, “out” and “longitudinal” terms in the exponent of the correlator, a previously neglected “out-longitudinal” cross term is found and discussed. The model-independent expressions for the size parameters of the HBT correlation function are interpreted as lengths of homogeneity of the source, in distinction to its purely geometrical size. They are evaluated analytically and numerically for two specific thermal models featuring collective transverse and longitudinal flow. The analytic expressions derived allow one to establish qualitatively important connections between the space-time features of the source and the shape of the correlation function. New ways of parametrizing the correlation function and a new approach to the measurement of the duration of the emission process are suggested.

Keywords

Correlation Function Cylindrical Symmetry Cross Term Correlation Radius Transverse Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Boal, C.K. Gelbke and B. Jennings,Rev. Mod. Phys. 62 (1990) 553.CrossRefADSGoogle Scholar
  2. 2.
    G.F. Bertsch, P. Danielewicz and M. Herrmann,Phys. Rev. C49 (1994) 442.CrossRefADSGoogle Scholar
  3. 3.
    E. Shuryak,Phys. Lett. B44 (1973) 387;Sov. J. Nucl. Phys. 18 (1974) 667.Google Scholar
  4. 4.
    S. Pratt, T. Csörgő and J. Zimányi,Phys. Rev. C42 (1990) 2646.CrossRefGoogle Scholar
  5. 5.
    I.V. Andreev, M. Plümer and R.M. Weiner,Int. J. Mod. Phys. A8 (1993) 4577.MATHCrossRefADSGoogle Scholar
  6. 6.
    S. Chapman and U. Heinz,Phys. Lett. B340 (1994) 250.Google Scholar
  7. 7.
    S. Chapman, P. Scotto and U. Heinz, submitted toPhys. Rev. Lett., in press.Google Scholar
  8. 8.
    Y. Sinyukov, inHot Hadronic Matter: Theory and Experiment, eds, J. Letessier et al., Plenum, New York, 1995, in press.Google Scholar
  9. 9.
    T. Csörgő, B. Lørstad and J. Zimányi,Phys. Lett. B338 (1994) 134.Google Scholar
  10. 10.
    T. Csörgő, Lund preprint LUNFD6 (NFFL-7081) (1994),Phys. Lett. B, in press; T. Csörgő, B. Lørstad, Lund preprint LUNFD6 (NFFL-7082) (1994).Google Scholar
  11. 11.
    M. Gyulassy, S.K. Kauffmann and L.W. Wilson,Phys. Rev. C20 (1979) 2267.CrossRefADSGoogle Scholar
  12. 12.
    B.R. Schlei et al.,Phys. Lett. B293 (1992) 275; J. Bolz et al.,Phys. Lett. B300 (1993) 404.Google Scholar
  13. 13.
    A.N. Makhlin and Y.M. Sinyukov,Sov. J. Nucl. Phys. 46, (1987) 345.Google Scholar
  14. 14.
    NA35 Coll., T. Alber et al.,Phys. Rev. Lett. 74 (1995) 1303.CrossRefADSGoogle Scholar
  15. 15.
    NA35 Coll., G. Roland et al.,Nucl. Phys. A566 (1994) 527c; NA35 Coll., D. Ferenc et al., Frankfurt preprint IKF-HENPG/2-94 (1994); NA44 Coll., M. Sarabura et al.,Nucl. Phys. A544 (1992) 125c; E802 Coll., T. Abbott et al.,Phys. Rev. Lett. 69 (1992) 1030.CrossRefADSGoogle Scholar
  16. 16.
    NA35 Coll., P. Seyboth et al.,Nucl. Phys. A544 (1992) 293c; NA35 Coll., D. Ferenc et al.,Nucl. Phys. A544 (1992) 531c.CrossRefADSGoogle Scholar
  17. 17.
    NA44 Coll., H. Beker et al., CERN-PPE/94-119, submitted toPhys. Rev. Lett. Google Scholar
  18. 18.
    T. Csörgő and S. Pratt, Lund Preprint LU TP 91-10, in Proc. of the Workshop on Relativistic Heavy Ion Physics, preprint KFKI-1991 — 28/A, p. 75.Google Scholar
  19. 19.
    K.S. Lee, E. Schnedermann and U. Heinz,Z. Phys. C48 (1990) 525.Google Scholar
  20. 20.
    A. Makhlin and Y. Sinyukov,Z. Phys. C39 (1988) 69.Google Scholar
  21. 21.
    This was not seen in [10] where only the first order corrections were calculated in the LCMS frame, βL=0.Google Scholar
  22. 22.
    M. Gyulassy, Lecture given at the Budapest Workshop on High Energy Heavy Ion Physics, August 25–28, 1994.Google Scholar
  23. 24.
    U. Mayer, E. Schnedermann and U. Heinz,Phys. Lett. B294 (1992) 69.Google Scholar

Copyright information

© Akadémiai Kiadó 1995

Authors and Affiliations

  • Scott Chapman
    • 1
  • Pierre Scotto
    • 1
  • Ulrich Heinz
    • 1
  1. 1.Institut für Theoretische PhysikUniversität RegensburgRegensburgGermany

Personalised recommendations