Advertisement

Proceedings: Plant Sciences

, Volume 97, Issue 4, pp 309–314 | Cite as

Effects of seawater salinity on free amino acids and mineral ions inSuaeda nudiflora Moq.

  • A J Joshi
  • E R R Iyengar
Article
  • 14 Downloads

Abstract

Variations in accumulation of free amino acids and mineral content in the succulent leaves ofSuaeda nudiflora in response to seawater salinity stress (10–40 mS. cm−1) have been studied. Alanine, aspartic acid, glutamic acid, glycine, phenylalanine, proline and serine were found in greater concentration than other amino acids. Under higher salinities, decline in concentration of aspartic acid and glutamic acid and increase in proline were observed. Massive accumulation of Na+ and Cl was recorded but salinity caused little variations of Ca2+, Mg2+ and SO 4 2− .

Keywords

Salinity free amino acids minerals Suaeda nudiflora 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cavalieri A J 1983 Proline and glycine betaine accumulation bySpartina alterniflora in response to NaCl and nitrogen in a controlled environment;Oecologia (Berlin) 57 20–24CrossRefGoogle Scholar
  2. Flowers T J 1975 Halophytes; inIon transport in plant cells and tissues (eds) D A Baker and J C Hall (Amsterdam: North Holland Publ. Co.) pp 309–334Google Scholar
  3. Flowers T J, Troke P F and Yeo A R 1977 The mechanism of salt tolerance in halophytes;Ann. Rev. Plant Physiol. 28 89–121CrossRefGoogle Scholar
  4. Goas M 1971 Metabolisme azote des halophytes: Utilization de la L-proline C14(U) par les jeunes plantes d'Aster tripolium L:C.R. Acad. Sci. Paris 277 414–417Google Scholar
  5. Goas M, Goas G and Larher F 1970 Metabolisme azote des halophytes: Utilization de l' acide glutamique14C-3-4 par les jeunes plantes d'Aster tripolium;C. R. Acad. Sci. Paris 271 1763–1766Google Scholar
  6. Jefferies R L 1973 The ionic relations of seedlings of the halophytesTriglochin maritima L; inIon transport in plants (ed.) W P Anderson (London: Academic Press) pp 297–321Google Scholar
  7. Jefferies R L, Rudmik T and Dillon E M 1979 Responses of halophytes to high salinities and low water potentials;Plant Physiol. 64 989–994PubMedCrossRefGoogle Scholar
  8. Joshi A J 1981 Amino acids and mineral constituents inSesuvium portulacastrum L., a salt marsh halophytes;Aqua. Bot. 10 69–74CrossRefGoogle Scholar
  9. Joshi A J 1986 Effects of seawater on amino acids and mineral ions composition inSalicornia brachiata Roxb.;Z. Pflazenphysiol. 123 497–502Google Scholar
  10. Joshi A J and Iyengar E R R 1984 Variations of amino acids and mineral constituents inSuaeda nudiflora Moq.;Indian J. Plant Physiol. 27 125–129Google Scholar
  11. Kruze and Ivanska J 1965 Determination of Proline. I. Conditions of determinations;Chem. Anal. (Warsaw) 10 237–243Google Scholar
  12. Larher F 1970 Contribution a l' etude du metabolisme azote deLimonium vulgare Mill. Acides amines et amides libres;Bull. Soc. Bretagne 45 27–32Google Scholar
  13. Larher F 1971 Metabolisme azote des halophytes: Utilization de la proline14C(U) par les rameaux vegetatifs de plantes deLimonium vulgare Mill.;C.R. Acad. Sci. Paris 272 823–826Google Scholar
  14. Larher F, Goas M and Goas G 1970 Metabolisme azote des halophytes: Utilisation de l'acide glutamique14C-3-4 par les remeaux vegetatifs deLimonium vulgare Mill;C.R. Acad. Sci. Paris 271 1880–1883Google Scholar
  15. Popp M and Albert R 1980 Freie aminosauren und stickstoffgehalt in halophyten des Neusiedlersee-Gebietes;Flora 170 229–239Google Scholar
  16. Popp M and Albert R 1981 Jahreszeitlich und altersbedingte variationen im stickstoffhaushalt von Halophyten;Ber. Dtsch. Bot. Ges. 94 171–180Google Scholar
  17. Popp M, Larher F and Weigel P 1984 Chemical composition of Australian mangroves III free amino acids, total methylated onium compounds and total nitrogen;Z. Pflanzenphysiol. 114 15–25Google Scholar
  18. Rains D W and Epstein E 1967 Preferential absorption of potassium by leaf tissue of the mangroveAricennia marina: an aspect of halophytic competence in coping with salt;Aust. J. Biol. Sci. 20 847–857Google Scholar
  19. Stewart G R and Lee J A 1974 The role of proline accumulation in halophytes;Planta (Berl.) 120 279–289Google Scholar
  20. Stewart G R, Larher F, Ahmad I and Lee J A 1979 Nitrogen metabolism and salt tolerance in higher plant halophytes; inEcological process in coastal environments (eds) R L Jefferies and A J Davy (Oxford: Blackwell Scientific Publications)Google Scholar
  21. Treichel S 1975 The effect of NaCl on the concentration of proline in different halophytes;Z. Pflanzenphysiol 76 56–58Google Scholar
  22. Vogel A I 1978A text book of quantitative inorganic analysis (London: The ELBS edition)Google Scholar
  23. Volhard 1956 Chloride; inModern methods of plant analysis (eds) K Paech and M V Tracey (Berlin: Springer Verlag)Google Scholar
  24. Waisel Y 1972Biology of halophytes (New York: Academic Press)Google Scholar

Copyright information

© Indian Academy of Sciences 1987

Authors and Affiliations

  • A J Joshi
    • 1
  • E R R Iyengar
    • 2
  1. 1.Department of Life SciencesBhavnagar UniversityBhavnagarIndia
  2. 2.Central Salt and Marine Chemicals Research InstituteBhavnagarIndia

Personalised recommendations