Proceedings: Plant Sciences

, Volume 94, Issue 4–6, pp 539–551 | Cite as

Interphase nuclear structure in plants: role of nuclearDNA content and highly repeatedDNA sequences in chromatin condensation

  • Shubhada Patankar
  • C P Joshi
  • S A Ranade
  • Mrinal Bhave
  • P K Ranjekar


Using the HCl-Giemsa banding technique, the total proportion of condensed chromatin was determined by planimetry in 23 plant species and was found to vary from 14–77%. Comparison of condensed chromatin values withDNA content indicated that the latter was involved in determining the interphase nuclear structure. The actual amounts of differentDNA components in these species were estimated in terms of picograms. Statistical analysis of condensed chromatin values with quantities of different types ofDNA sequences showed the best correlation with highly repeatedDNA sequences, suggesting that these sequences could be playing an important role in governing the species-specific chromatin condensation in plants. The amount ofDNA packaged per unit length of chromatin was also shown to be a determinant of interphase nuclear structure.


Interphase nuclear structure condensed chromatin DNA sequences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Appels R and Peacock W J 1979 The arrangement and evolution of highly repeated (satellite)DNA sequences with special reference toDrosophila;Int. Rev. Cytol. Suppl. 8 69–126CrossRefGoogle Scholar
  2. Appels R, Driscoll C and Peacock W J 1978 Heterochromatin and highly repeatedDNA sequences in rye (Secale cereale);Chromosoma (Berl.) 70 67–89.CrossRefGoogle Scholar
  3. Barlow P W 1977 Determinants of nuclear chromatin structure in angiosperms;Ann. Sci. Nat. Bot. (Paris)18 193–206Google Scholar
  4. Bennett M D and Smith J B 1976 NuclearDNA amounts in angiosperms;Philo. Trans. R. Soc. London.B274 227–274CrossRefGoogle Scholar
  5. Bennett M D, Smith J B and Heslop-Harrison J S 1982 NuclearDNA amounts in angiosperms;Proc. R. Soc. London B216 174–199CrossRefGoogle Scholar
  6. Bhave M R, Gupta V S and Ranjekar P K 1985 Molecular analysis of cucurbitaceae genomes III: Arrangement and size distribution of repeat and single copyDNA sequences in four plant species;Plant Syst. Evol. (In press)Google Scholar
  7. Bhave M R, Lagu M D and Ranjekar P K 1984 Molecular analysis of cucurbitaceae genomes. I: Comparison ofDNA reassociation kinetics in six plant species;Plant Sci. Lett. 33 127–136CrossRefGoogle Scholar
  8. Chikara J and Gupta P K 1979 Karyological studies in the genusSetaria I: Variability withinSetaria italica (L) Beauv.J. Cytol. Genet. 14 75–79Google Scholar
  9. Choudhary A D 1978Mutational studies in Allium sativum Linn. Ph.D. Thesis, Nagpur Univeristy, Nagpur, IndiaGoogle Scholar
  10. Darlington C D and LaCour L F 1976Handling of chromosomes 6th edn (London: George Allen and Unwin)Google Scholar
  11. Delay C 1948 Recherches sur la structure des noyax quiescents chez des phanerogames;Rev. Cytol. Cytophysiol. Veg. 10 103–228Google Scholar
  12. Deshpande V G and Ranjekar P K 1980 RepetitiveDNA in three gramineae species with lowDNA content Hoppe-Seyler’sZ. Physiol. Chem. 361 1223–1233Google Scholar
  13. Flavell R B and Smith D B 1976 Nucleotide sequence organization in wheat genome;Heredity 37 231–252CrossRefGoogle Scholar
  14. Gupta V S and Ranjekar P K 1981DNA sequence organization in finger millet (Eleusine coracana);J. Biosci. 3 417–430CrossRefGoogle Scholar
  15. Gupta V S and Ranjekar P K 1982 Genome organization in pearl millet;Indian J. Biochem. Biophys. 19 167–170PubMedGoogle Scholar
  16. Gupta V S, Gadre S R and Ranjekar P K 1981 NovelDNA sequence organization in rice genome;Biochim. Biophys. Acta 656 147–154Google Scholar
  17. Hutchinson J, Narayan R K J and Rees H 1980 Constraints upon the composition of supplementaryDNA; Chromasoma (Berl.)78 137–145CrossRefGoogle Scholar
  18. Ingle J, Pearson C G and Sinclair J 1973 Species distribution and properties of nuclear satelliteDNA in higher plants;Nature (New Biol.) 242 193–197CrossRefGoogle Scholar
  19. Jones R N and Rees H 1968 NuclearDNA variation inAllium;Heredity 25 591–605CrossRefGoogle Scholar
  20. Joshi C P and Ranjekar P K 1980 Technique for heterochromatin visualization and chromosome banding in plants;Nucleus (Calcutta) 23 169–176Google Scholar
  21. Joshi C P and Ranjekar P K 1982 Visualization and distribution of heterochromatin in interphase nuclei of several plant species as revealed by new Giemsa banding technique;Cytologia (Tokyo) 47 471–480Google Scholar
  22. Kempanna C, Laxmi P V and Nasrath R 1976 Karyotype studies inEleusine coracana;Nucleus (Calcutta) 19 200–203Google Scholar
  23. Kurata N and Omura T 1978 Karyotype analysis in rice. I. A new method for identifying all chromosome PairsJpn. J. Genet. 53 251–255CrossRefGoogle Scholar
  24. Lafontaine J G 1974 Ultrastructural organization in plant cell nuclei; inThe cell nucleus (ed.) H Busch (New York: Academic Press) Vol. 1 pp. 149–185Google Scholar
  25. Lakshmi S 1984Genome characterization in plants with special reference to four millet species Ph.D. Thesis, University of Poona, Poona, IndiaGoogle Scholar
  26. Lakshmi S and Ranjekar P K 1984 Novel molecular features of millet genomes;Indian J. Biochem. Biophys. 21 299–303Google Scholar
  27. Lakshmi S, Gupta V S and Ranjekar P K 1984 Molecular organization of great millet (Sorghum vulgare)DNA;J. Biosci. 6 795–809CrossRefGoogle Scholar
  28. Mukherjee P 1979 Karyotype variation in ten strains of Indian radish (Raphanus sativus L.);Cytologia (Tokyo) 44 347–352Google Scholar
  29. Nagl W 1979a Condensed interphase chromatin in plant and animal cell nuclei;Plant Syst. Evol. Suppl. 2 247–260Google Scholar
  30. Nagl W 1979b Interphase chromatin organization in plant nuclei as determined by genome organization.Hope-Seyler’s Z. Physiol. Chem. 360 331–332Google Scholar
  31. Nagl W 1982 Condensed chromatin: species specificity, tissue specificity and cell cycle specificity as monitored by scanning cytometry; inCell growth (ed.) C Nicolini (New York: Plenum Publishing Corporation) pp. 171–218Google Scholar
  32. Nagl W and Bachmann K 1980 Condensed chromatin in diploid and allopolyploidMicroseris species with different genome size: A quantitative electron microscopic study;Theor. Appl. Genet. 57 107–111CrossRefGoogle Scholar
  33. Nagl W and Capesius I 1977 RepetitiveDNA and heterochromatin as factors of karyotype evolution in phylogeny and ontogeny of orchids; inChromosomes today (eds) A de la Chapelle and M Sorsa (Amsterdam: Elsevier/North Holland Biomedical Press) Vol. 6 pp. 141–152Google Scholar
  34. Nagl W and Fusenig H P 1979 Types of chromatin organization in plant nuclei;Plant Syst. Evol. Suppl. 2 221–233Google Scholar
  35. Nagl W, Jeanjour M, Kling H, Kuhner S, Michels I, Muller T and Stein B 1983 Genome and chromatin organization in higher plants;Biol. Zentralbl. 102 129–148Google Scholar
  36. Narayan R K J and Rees H 1976 NuclearDNA variation inLathyrus;Chromosoma (Berl.) 54 141–154CrossRefGoogle Scholar
  37. Narayan R K J and Durrant A 1983DNA distribution in chromosomes ofLathyrus species;Genetica 61 47–53CrossRefGoogle Scholar
  38. Noda K and Kasha K J 1978 A modified Giemsa C-banding technique forHordeum species;Stain Technol. 53 155–162PubMedGoogle Scholar
  39. Patankar S and Ranjekar P K 1984a Interphase nuclear structure and heterochromatin inPhaseolus plant species;Plant Cell Rep. 3 130–133CrossRefGoogle Scholar
  40. Patankar S and Ranjekar P K 1984b Condensed chromatin and its under-replication during root differentiation in leguminosae;Plant Cell Rep. 3 250–253CrossRefGoogle Scholar
  41. Patau K 1952 Absorption microphotometry of irregular shaped objects;Chromosoma (Berl.) 5 341–362CrossRefGoogle Scholar
  42. Pegington C and Rees H 1970 Chromosome weights and measures in the triticineae;Heredity 25 195–205CrossRefGoogle Scholar
  43. Ranjekar P K 1982 Analysis of plant genomes—A molecular approach;J. Sci. Ind Res. 41 384–393Google Scholar
  44. Ranjekar P K, Lafontaine J G and Pallota D 1974 Characterization of repetitiveDNA in rye (Secale cereale);Chromosoma (Berl.) 48 427–440CrossRefGoogle Scholar
  45. Ranjekar P K, Pallota D and Lafontaine J G 1976 Analysis of the genome of plants. II. Characterization of repetitiveDNA in barley (Hordeum vulgare) and wheat (Triticum aestivum);Biochim. Biophys. Acta 425 30–40PubMedGoogle Scholar
  46. Ranjekar P K, Pallota D and Lafontaine J G 1978a Analysis of plant genomes. III. Denaturation and reassociation properties of cryptic satelliteDNAS in barley (Hordeum vulgare) and wheat (Triticum aestivum);Biochim. Biophys. Acta 520 103–110PubMedGoogle Scholar
  47. Ranjekar P K, Pallota D and Lafontaine J G 1978b Analysis of plant genomes. IV. Isolation and characterization of satelliteDNA components from two dicotyledons, cucumber (Cucumis sativus) and radish (Raphanus sativus);Can. J. Biochem. 56 808–815PubMedCrossRefGoogle Scholar
  48. Ranjekar P K, Pallota D and Lafontaine J G 1978c Analysis of plant genomes. V. Comparative study of molecular properties ofDNAS of sevenAllium species;Biochem. Genet. 16 957–970PubMedCrossRefGoogle Scholar
  49. Sarbhoy R K 1980 Karyological studies in the genusPhaseolus Linn;Cytologia (Tokyo) 45 363–373Google Scholar
  50. Sen R and Datta K B 1978 Cytological studies in some Indian cultivated varieties ofCucumis L;J. Cytol. Genet. 13 16–22Google Scholar
  51. Seshadri M and Ranjekar P K 1979 Genome characterization of three plant species belonging to genusPhaseolus;Indian J. Bioche. Biophys. 16 1–5Google Scholar
  52. Seshadri M and Ranjekar P K 1980a Denaturation and renaturation properties of the genome ofPhaseolus vulgaris;Hoppe-Seyler’s Z. Physiol. Chem. 361 1041–1048PubMedGoogle Scholar
  53. Seshadri M and Ranjekar P K 1980b An unusual pattern of genome organization in twoPhaseolus plant species;Biochim. Biophys. Acta 610 211–220PubMedGoogle Scholar
  54. Singh A K and Roy R P 1979 Cytological studies inTrichosanthes L;J. Cytol. Genet. 14 50–57Google Scholar
  55. Smith D B and Flavell R B 1977 Nucleotide sequence organization in rye genome;Biochim. Biophys. Acta 474 82–97PubMedGoogle Scholar
  56. Stack S M and Comings D E 1979 Chromosomes andDNA ofAllium cepa;Chromosoma (Berl.) 70 161–182CrossRefGoogle Scholar
  57. Timmis J N, Deumling B and Ingle J 1975 Localization of satelliteDNA sequences in nuclei and chromosomes of two plants;Nature (New Biol.) 257 152–155CrossRefGoogle Scholar
  58. Vosa C G 1974 The basic karyotype of rye (Secale cereale) analysed with Giemsa and fluorescence methods;Heredity 33 403–408CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1985

Authors and Affiliations

  • Shubhada Patankar
    • 1
  • C P Joshi
    • 1
  • S A Ranade
    • 1
  • Mrinal Bhave
    • 1
  • P K Ranjekar
    • 1
  1. 1.Biochemistry DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations