Ordinary linear differential equations involving random functions

  • P. M. Mathews
  • S. K. Srinivasan


Physical processes which can be represented by symbolic differential equations involving random functions are cited and studied. The solutions of these equations are obtained using Ramakrishnan’s recent phenomenological interpretation of integrals of random functions.


Random Function Linear Differential Equation Cialised Ordinary Linear Differential Equation Iterate Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chandrasekhar, S.Rev. Mod. Phys., 1943,15 1.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    — and Munch, G.Astrophys. J., 1952,115, 103.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Jones, R. W. and McCombie, C. W.Phil. Trans., 1952,244 A, 208.Google Scholar
  4. 4.
    Mathews, P. M. and Srinivasan, S. K.Proc. Nat. Inst. Sci., India, 1955 (in Press).Google Scholar
  5. 5.
    McDonald, D. K. C.Rep. Prog. Phys., 1948–49,12, 56.CrossRefGoogle Scholar
  6. 6.
    Moyal, J. E.J. Roy. Statist. Soc., 1949,11 B, 150.MathSciNetGoogle Scholar
  7. 7.
    Ramakrishnan, AlladiProc. Kon. Ned. Akad. van Wet., 1955 (in Press).Google Scholar
  8. 8.
    Astrophys. J., 1954a,119, 443.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ibid., 1954b,119, 682.CrossRefMathSciNetGoogle Scholar
  10. 10.
    Ramakrishnan, Alladi and Srinivasan, S. K.Ibid., Astrophys. J., (in Press).Google Scholar
  11. 11.
    Wang, Ming Chen and Uhlenbeck, G. E.Rev. Mod. Phys., 1945,17, 323.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 1956

Authors and Affiliations

  • P. M. Mathews
    • 1
  • S. K. Srinivasan
    • 1
  1. 1.Department of PhysicsUniversity of MadrasMadrasIndia

Personalised recommendations