The autoxidation of thiol aminoacids and ascorbate and their cooperative effects as antioxidants with trolox in micelles and lipid bilayers

  • L. R. C. Barclay
  • K. A. Dakin
  • J. A. Y. Khor


The thiols cysteine (1), homocysteine (2), acetylcysteine (3), glutathione (4), and dithioerythritol (5) underwent autoxidation with controlled rates of chain initiation (Ri) when driven by azobis (2-amidino propane hydrochloride (ABAP). Cysteine exhibits the largest rate constant. Thils2 and4 inhibited the facile self-initiated autoxidation of ascorbate and regenerated ascorbate from its oxidation product, dehydroascorbic acid. Thiols1 and2 inhibited ABAP- initiated peroxidation of dilinoleoyl phosphatidylcholine (DLPC) membranes with a kinh similar to that of 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylate (Trolox). Thiols14 all acted cooperatively with Trolox to inhibit ABAP-initiated peroxidation of DLPC membranes. Stoichiometric factors, n=0.31−0.63, are attributed to oxidative wasting reactions.

Each thiol,2, 4, and5 when combined with ascorbate further extended the inhibition period mediated by Trolox during peroxidation of linoleate initiated by lipid-soluble di-tert-butylhyponitrite (DBHN) in sodium dodecly sulfate (SDS) micelles. The spin trap phenyl-tert-butylnitrone (PBN) exhibited only retardant (not antioxidant) activity during peroxidation of linoleate initiated by DBHN or ABAP in SDS micelles.


Thiol Homocysteine Linoleate Induction Period Trolox 


  1. 1.
    N.S. Kosower, E.M. Kosower, In:Free Radicals in Biology; W.A. Pryor, (Ed.), Academic Press, New York, Vol. II, Chapter 2, pp. 55–84 (1976).Google Scholar
  2. 2.
    Free Radicals in Biology and Medicine, B. Halliwell, J.M.C. Gutteridge, Clarendon Press, Oxford, (1985).Google Scholar
  3. 3.
    B.H.J. Bielski, J.M. Gebicki, In:Free Radicals in Biology; Pryor, W.A. (Ed.); Academic Press, New York, Vol. III, Chapter 1, pp. 1–51 (1977).Google Scholar
  4. 4.
    D.J. Reed,Biochem. Pharm.,35, 7 (1986).CrossRefGoogle Scholar
  5. 5.
    P.J. O’Brien, In:Autoxidation of Unsaturated Lipids, Academic Press, London, Chapter 7, pp. 233–280 (1987).Google Scholar
  6. 6.
    P.B. McCay, S.R. Powell, In:Glutathione: Chemical, Biochemical, and Medical Aspects, Part B; D. Dolphin, R. Poulson, O. Avramovic (Eds.), J. Wiley, Inc., Chapter 4, pp. 111–151 (1989).Google Scholar
  7. 7.
    B. Frei, R. Stocker, B.N. Ames,Proc. Natl. Acad. Sci., U.S.A.85, 9748 (1988).CrossRefGoogle Scholar
  8. 8.
    D.D.M. Wayner, G.W. Burton, K.U. Ingold, L.R.C. Barclay, and S.J. Locke,Biochem. Biophys. Acta.,924, 408 (1987).Google Scholar
  9. 9.
    T. Motoyama, M. Masayuki, M. Mino, M. Takahashi, and E. Niki,Arch. Biochem. Biophys.,270, 655 (1989).CrossRefGoogle Scholar
  10. 10.
    J. Tsuchiya, T. Yamada, E. Niki, and Y. Kamiya,Bull. Chem. Soc. Jpn.,58, 326 (1985).CrossRefGoogle Scholar
  11. 11.
    L.R.C. Barclay,J. Biol. Chem.,263, 16138 (1988).Google Scholar
  12. 12.
    D. Schulte-Frohlinde, G. Behrens, and A. Önal,Int. J. Radiat. Biol.,50, 103 (1986)CrossRefGoogle Scholar
  13. 13.
    C. Schöneich, K.-D. Asmus, U. Dillinger, and K. Bruchhausen,Biochem Biophys. Res. Commun,161, 113 (1989).CrossRefGoogle Scholar
  14. 14.
    G.R.M.M. Haenen, N.P.E. Vermeulen, H. Timmerman, and A.A.L.T. Bast,Chem. Biol. Interactions,71, 201 (1989).CrossRefGoogle Scholar
  15. 15.
    D.C. Liehler, D.S. Kling, and D.J. Reed,J. Biol. Chem. 261, 12114 (1986).Google Scholar
  16. 16.
    H. Wariishi, K. Valli, V. Renganathan, and M.H. Gold,J. Biol. Chem.,264, 14185 (1989).Google Scholar
  17. 17.
    W. Wolf, J.C. Kertesz, and W.C. Landgraf,Spect. Letters,1, 27 (1968).CrossRefGoogle Scholar
  18. 18.
    J.C. Kertesz, M.B. Wolf, W. Wolf, and L.Y.A. Chen,J. Pharm. Sci.,63, 880 (1974).CrossRefGoogle Scholar
  19. 19.
    M.D. Sevilla, D. Becker, S. Swarts, and J. Herrington,Biochem. Biophys. Res. Commun.,144, 1037 (1987).CrossRefGoogle Scholar
  20. 20.
    M.D. Sevilla, M. Yan, and D. Becker,Biochem. Biophys. Res. Commun.,155, 405 (1988).CrossRefGoogle Scholar
  21. 21.
    D. Becker, S. Swarts, M. Champagne, and M.D. Sevilla,Int. J. Radiat. Biol.,53, 767 (1988).CrossRefGoogle Scholar
  22. 22.
    B.C. Gilbert, H.A.H. Laue, R.O.C. Norman, and R.C. Sealy,J. Chem. Soc. Perkin II, 892 (1975).Google Scholar
  23. 23.
    G. Saez, P.J. Thornalley, H.A.O. Hill, R. Heins, and J.V. Bannister,Biochim. Biophys. Acta,719, 24 (1982).Google Scholar
  24. 24.
    T.E. Eling, J.F., Curtis, L.S. Harman, and R.P. Mason,J. Biol. Chem.,261, 5023 (1986).Google Scholar
  25. 25.
    L.S. Harman, D.K. Carver, J. Schreiber, and R.P. Mason,J. Biol. Chem.,261, 1642 (1986).Google Scholar
  26. 26.
    L.S. Harman, C. Mottley, and R.P. Mason,J. Biol. Chem.,259, 5606 (1984).Google Scholar
  27. 27.
    S. Kubow, E.G. Janzen, and T.M. Bray,J. Biol. Chem.,259, 4447 (1984).Google Scholar
  28. 28.
    S. Kubow, T.M. Bray, and E.G. Janzen,Biochem. Pharmacol.,34, 1117 (1985).CrossRefGoogle Scholar
  29. 29.
    M. Nakamura, I. Yamazaki, T. Kotani, and S. Ohtaki,J. Biol. Chem.,264 12909 (1989).Google Scholar
  30. 30.
    L.G. Forni and R.L. Willson,Biochem. J.,240, 905 (1986).Google Scholar
  31. 31.
    L.G. Forni, J. Möonig, V.O. Mora-Arellano, and R.L. Willson,J. Chem. Soc. Perkin II, 961 (1983).Google Scholar
  32. 32.
    B.H.J. Bielski, Chemistry of Ascorbic Acid Radicals, In:Ascorbic Acid: Chemistry, Metabolism, and Uses, P.A. Seib and B.M. Tolbert (Eds.), Adv. Chem. Series Vol. 200, Ch. 4, pp. 81–99, (1982).Google Scholar
  33. 33.
    E. Niki. In:World Rev. Nutr. Diet. A.P. Simopoulos (Ed.), Vol.64, pp. 1–30, S. Karger, Basel, Switzerland (1991).Google Scholar
  34. 34.
    Y.-C. Liu, Z.-L. Liu, and Z.-X. Han,Rev. Chem. Interm.,10, 269 (1988).CrossRefGoogle Scholar
  35. 35.
    A. Bendich, L.J. Machlin, O. Scandurra, G.W. Burton, and D.D.M. Wayner,Adv. Free Rad. Biol. Med.,2, 419 (1986).CrossRefGoogle Scholar
  36. 36.
    P.B. McCay,Ann Rev. Nutr.,5, 323 (1985).CrossRefGoogle Scholar
  37. 37.
    E. Niki, T. Saito, A. Kawakami, and Y. Kamiya,J. Biol. Chem.,259, 4177 (1984).Google Scholar
  38. 38.
    C. Rousseau, C. Richard, and R. Martin,J. Chim. Phys.,81, 137 (1984).Google Scholar
  39. 39.
    L.R.C. Barclay, S.J. Locke, and J.M. MacNeil,Can. J. Chem.,63, 366 (1985).CrossRefGoogle Scholar
  40. 40.
    H.-W. Leung, M.J. Vang, and R.D. Mavis,Biochim. Biophys. Acta.,664, 266 (1981).Google Scholar
  41. 41.
    M. Scarpa, A. Rigo, M. Maiorino, F. Ursini and C. Gregolin,Biochim. Biophys. Acta.,801, 215 (1984).Google Scholar
  42. 42.
    T. Doba, G.W. Burton, and K.U. Ingold,Biochim. Biophys. Acta.,835, 298 (1985).Google Scholar
  43. 43.
    E. Niki, A. Kawakami, Y. Yamamoto, and Y. Kamiya,Bull. Chem. Soc. Jpn.,58, 1971 (1985).CrossRefGoogle Scholar
  44. 44.
    K. Sato, E. Niki, and H. Shimasaki,Arch. Biochem. Biophys.,279, 402 (1990).CrossRefGoogle Scholar
  45. 45.
    G.T. Vatassery, W.E. Smith, and H.T. Quach,Lipids,24, 1043 (1989).CrossRefGoogle Scholar
  46. 46.
    B. Frei, L. England, and B.N. Ames,Proc. Natl. Acad. Sci.,86, 6377 (1989).CrossRefGoogle Scholar
  47. 47.
    E. Niki,Am. J. Clin. Nutr.,54, 1119S (1991).Google Scholar
  48. 48.
    W.A. Pryor, M.J. Kaufman, and D.F. Church,J. Org. Chem.,50, 281 (1985).CrossRefGoogle Scholar
  49. 49.
    K. Mukai, K. Fukuda, K. Ishizu, and Y. Kitamura,Biochem. Biophys. Res. Commun.,146, 134 (1987).CrossRefGoogle Scholar
  50. 50.
    M. Takahashi, E. Niki, A. Kawakami, A. Kumasaka, Y. Yamamoto, Y. Kamiya, and K. Tanaka,Bull. Chem. Soc. Jpn.,59, 3179 (1986).CrossRefGoogle Scholar
  51. 51.
    K. Kato, S. Terao, N. Shimamoto, and H. Hirata,J. Med. Chem.,31, 793 (1988).CrossRefGoogle Scholar
  52. 52.
    Y. Nihro, H. Miyataka, T. Sudo, H. Matsumoto, and T. Satoh,J. Med. Chem.,34, 2152 (1991).CrossRefGoogle Scholar
  53. 53.
    L.R.C. Barclay, K.A. Dakin, and H.A. Zahalka,Can. J. Chem.,70, 2148 (1992).CrossRefGoogle Scholar
  54. 54.
    D.T. Sawyer, G. Chiericato, and T. Tsuchiya,J. Am. Chem. Soc.,104, 6273 (1982).CrossRefGoogle Scholar
  55. 55.
    D.E. Cabell, and B.H.J. Bielski,J. Phys. Chem.,87, 1809 (1983).CrossRefGoogle Scholar
  56. 56.
    D.B. Shin and M.S. Feather,J. Carbohydrate Chem.,9, 461 (1990).CrossRefGoogle Scholar
  57. 57.
    E. Niki, K. Yamamoto, and M. Takahashi, In:The Role of Oxygen in Chemistry and Biochemistry: Studies in Organic Chemistry, W. Ando and Y. Moro-oka (Eds.), Vol. 33, pp. 509–514, Elsevier Publishers, Amsterdam (1988).Google Scholar
  58. 58.
    A.W. Girotti, J.P. Thomas, and J.E. Jordan,Photochem. Photobiol.,41, 267 (1985).CrossRefGoogle Scholar
  59. 59.
    E. Shinar, T. Navok, and M. Chevion,J. Biol. Chem.,258, 14778 (1983).Google Scholar
  60. 60.
    M.-Liu and A.L. Tappel,Lipids,27, 42 (1992).CrossRefGoogle Scholar
  61. 61.
    I.A. Shkrob, M.C. Depew, and J.K.S. Wan,Res. Chem. Intermed 17, 271 (1992).CrossRefGoogle Scholar
  62. 62.
    J.K.S. Wan, M.Y. Tse, and C. Heitner,J. Wood. Chem. Technol.,13, 327 (1993).CrossRefGoogle Scholar
  63. 63.
    P. Fomier de Violet, A. Nourmamode, N. Colombo, J. Zhu, and A. Castellan,Cellulose Chem. Technol.,24, 225 (1990).Google Scholar
  64. 64.
    B.J.W. Cole and K.V. Sarkanen,Tappi J., 117 (1987).Google Scholar
  65. 65.
    J.E. Hooper. Ph.D. Dissertation, Univ. Washington, Seattle (1990).Google Scholar
  66. 66.
    L.R.C. Barclay, K.A. Baskin, K.A. Dakin, S.J. Locke, and M.R. Vinquist,Can. J. Chem.,68, 2258 (1990).CrossRefGoogle Scholar
  67. 67.
    G.L. Ellman,Arch. Biochem. Biophys.,82, 70 (1959).CrossRefGoogle Scholar
  68. 68.
    B.J. Bielski, P.C. Chan and H.W. Richter,Ann. N.Y. Acad. Sci.,258, 231 (1975).CrossRefGoogle Scholar
  69. 69.
    L.R.C. Barclay, K.A. Baskin, S.J. Locke, and T.D. Schaefer,Can. J. Chem.,65, 2529 (1987).CrossRefGoogle Scholar
  70. 70.
    G.W. Burton and K.U. Ingold,Acc. Chem. Res.,19, 194 (1986).CrossRefGoogle Scholar
  71. 71.
    L.R.C. Barclay, S.J. Locke, J.M. MacNeil, J. VanKessel, G.W. Burton, and K.U. Ingold,J. Am. Chem. Soc.,106, 2479 (1984).CrossRefGoogle Scholar
  72. 72.
    M.J. Davies,Chem. Phys. Lipids,44, 149 (1987).CrossRefGoogle Scholar
  73. 73.
    E.G. Janzen, D.L. Haire, G.A. Coulter, H.J. Stronks, P.H. Krygsman, R.A. Towner, and J.W. Hilborn,J. Org. Chem.,54, 2915 (1989).CrossRefGoogle Scholar
  74. 74.
    J.B. Feix and B. Kalyanaraman,Biochim. Biophys. Acta.,992, 230 (1989).Google Scholar
  75. 75.
    C.M. Arroyo, I.T. Mak, and W.B. Weglicki,Free Rad. Res. Commun.,5, 369 (1989).CrossRefGoogle Scholar
  76. 76.
    G. Chen, M. Griffen, J.L. Poyer, and P.B. McCay,Free Rad. Biol. Med.,8, 93 (1990).CrossRefGoogle Scholar
  77. 77.
    B.E. Britigan, T.L. Roeder, and D.M. Shasby,Blood,79, 669 (1992).Google Scholar
  78. 78.
    E. Monti, L. Paracchini, G. Perletti, and F. Piccinini,Free Rad. Res. Commun.,14, 41 (1991).CrossRefGoogle Scholar
  79. 79.
    T. Sata, E. Kubota, H.P. Misra, M. Mojarad, H. Pakbaz, and S.I. Said,Am. J. Physiol.,262, L147 (1992).Google Scholar
  80. 80.
    B. Kalyanaraman, J. Joseph, and S. Parthasarathy,FEBS,280, 17 (1991).CrossRefGoogle Scholar
  81. 81.
    D. Krilou, G. Pifat, and J.N. Herak,Can. J. Chem.,66, 1957 (1988).CrossRefGoogle Scholar
  82. 82.
    K.A. Dakin, D.F. Weaver and L.R.C. Barclay, 2nd Can. Computational Chem. Conf., Queen’s University, Kingston, Ont., May 21–25 (1994).Google Scholar
  83. 83.
    J. Solti, Ph.D. Thesis, University of Rochester (1985).Google Scholar
  84. 84.
    H.A. Zahalka, B. Robillard, L. Hughes, J. Lusztyk, G.W. Burton, E.G. Janzen, Y. Kotake, and K.U. Ingold,J. Org. Chem.,53, 3739 (1988).CrossRefGoogle Scholar
  85. 85.
    W.A. Pryor, J.A. Cornicelli, L.J. Devall, T. Bradley, B.K. Trivedi, D. Witiak, and M. Wu,J. Org. Chem.,58, 3521 (1993).CrossRefGoogle Scholar
  86. 86.
    E.G. Janzen, P.H. Krygsman, D.A. Lindsay, and D.L. Haire,J. Am. Chem. Soc.,112, 8279 (1990).CrossRefGoogle Scholar
  87. 87.
    B. Maillard, K.U. Ingold, and J.C. SCaiano,J. Am. Chem. Soc.,105, 5095 (1983).CrossRefGoogle Scholar

Copyright information

© Springer 1995

Authors and Affiliations

  • L. R. C. Barclay
    • 1
  • K. A. Dakin
    • 1
  • J. A. Y. Khor
    • 1
  1. 1.Chemistry DepartmentMount Allison UniversitySackvilleCanada

Personalised recommendations