Organisation and characteristics of gastric chemoceptive neurons in frog brain-stem

  • T. Ramakrishna
  • K. N. Sharma


Functional organisation of gastric chemoceptive projections in the brain-stem of single-pithed frogs was studied. The area between P 4·0–4·5, L 0·5–1·0 and V 0·0–0·5, has dense projections and is identifiable with fasciculus solitarius. Probit analysis of response characteristics of the parallel neurons in this area indicates that in addition to ‘across-neuron pattern’, spatio-temporal cues play an important role in conveying the quality message. Overall height of this pattern seems to indicate the intensity of the test material. The relative potency of test solutions used as stimulant is in the order: glucose > aminoacids > salt. It is suggested that the presence of glucose and aminoacids in the stomach may be important in relaying satiety signals. The fact that gastric chemoceptive afferents project to the areas of brain-stem implicated in gustatory responses is discussed in the light of oro-gastric interactions involved in food ingestion.


Test Solution Saccharine Relative Potency Probit Analysis Nucleus Tractus Solitarius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    De Valios, R. L., Behavioral and electrophysiological studies of primate vision. InContributions to sensory physiology, ed. W. D. Neff, New York. Academic Press, Vol.1 137–178 (1965).Google Scholar
  2. 2.
    Galambos, R. and Davis, H., The responses of single auditory nerve fibres to acoustic stimulation.J. Neurophysiology 6 39–58 (1943).Google Scholar
  3. 3.
    Hubel, D. H. and Wiesel, T. N., Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat.J. Neurophysiol. 28 229–289 (1965).PubMedGoogle Scholar
  4. 4.
    Hubel, D. H. and Wiesel, T. N., Receptive fields and functional architecture in the cat’s visual cortex.J. Physiol. (London) 160 106–154 (1962).Google Scholar
  5. 5.
    Katsuki, Y., Neural mechanism of auditory sensation in cats. InSensory communication. ed. W. A. Rosenblith, Cambridge, Mass., MIT Press 561–583 (1961).Google Scholar
  6. 6.
    Rose, J. E., Galambos, R. and Hughes, J. R., Microelectrode studies of the cochlear nuclei of the cat.Bull. Johns Hopkins Hosp. 104: 211–251 (1959).PubMedGoogle Scholar
  7. 7.
    Whitefield, I. C. and Evans, E. F., Responses of auditory cortical neurons to stimuli of changing frequency.J. Neurophysiol. 28 655–672 (1965).Google Scholar
  8. 8.
    Marshall, D. A., A comparative study of neural coding in gustation.Physiol. Behav 3 1–15 (1968).CrossRefGoogle Scholar
  9. 9.
    Ganchrew, J. R. and Erickson, R. P., Neural correlates of gustatory intensity and quality.J. Neurophysiol. 33 768–783 (1970).Google Scholar
  10. 10.
    Doetsch, G. S. and Erickson, R. P., Synaptic processing of taste quality information in the nucleus tractus solitarius of the rat.J. Neurophysiol. 33 490–507 (1970).PubMedGoogle Scholar
  11. 11.
    Ash, R. W., Stimuli in influencing the secretion of acid by the abomasum of sheep.J. Physiol. (London) 157 185–207 (1961).Google Scholar
  12. 12.
    Hill, K. J., Continuous gastric secretion in the ruminant.Quart. J. Exp. Physiol. 40 32–39 (1955).PubMedGoogle Scholar
  13. 13.
    Hunt, J. N., Some properties of an alimentary osmoreceptor mechanism.J. Physiol. (London) 132 267–288 (1956).Google Scholar
  14. 14.
    Hunt, J. N. and MacDonald, I., The influence of volume on gastric emptying.J. Physiol. (London) 126 459–474 (1954).Google Scholar
  15. 15.
    Iggo, A., Gastro-intestinal tension receptors with unmyelinated afferent fibers in the vagus of the cat.Quart. J. Exptl. Physiol. 42 130–143 (1957) (a).Google Scholar
  16. 16.
    Iggo, A., Gastric mucosal chemoreceptors with vagal afferent fibers in the cat.Quart. J. Exp. Physiol. 42 398–409 (1957) (b).PubMedGoogle Scholar
  17. 17.
    Niijima, A., Afferent impulses in the gastric and oesophageal branch of the vagal nerve of toad.Physiol. Behav. 2 1–4 (1967).CrossRefGoogle Scholar
  18. 18.
    Paintal, A. S., A study of gastric stretch receptors: their role in the peripheral mechanism of satiation of hunger and thirst.J. Physiol. (London) 126 255–270 (1954).Google Scholar
  19. 19.
    Sharma, K. N., Receptor mechanisms in the alimentary tract: their excitation and functions. InHandbook of Physiology. Alimentary Canal. Sect. 6, Vol. 1 225–237 (Code, C. F. ed.) Washington, Am. Physiol. Soc. (1967).Google Scholar
  20. 20.
    Sharma, K. N., Jacobs, H. L., Gopal, V. and Dua-Sharma, S., Vago-sympathetic modulation of gastric mechanoreceptors: effect of distension and nutritional state.J. Neurol. Transmission 33 113–154 (1972).CrossRefGoogle Scholar
  21. 21.
    Thomas, J. E. and Baldwin, M. V., Pathways and mechanisms of regulation of gastric motility. InHandbook of Physiology, Alimentary Canal. 4 (6) 1937–1968 (Code C. F., ed.) Washington, Am. Physiol. Soc. (1968).Google Scholar
  22. 22.
    Herrick, C. J., The fasciculus solitarius and its connections in amphibians and fishes.J. Comp. Neurol.,81 307–331 (1944).CrossRefGoogle Scholar
  23. 23.
    Kemali, M. and Braintenberg, V.,Atlas of the frog’s brain. Springer-Verlag, Berlin (1969).Google Scholar
  24. 24.
    Ramakrishna, T. and Sharma, K. N., Organization of gastric chemoceptive projections in frog brain-stem.Indian J. Physiol. Pharmacol.,15 38 (1971).Google Scholar
  25. 25.
    Ramakrishna, T., Sharma, K. N. and Dua-Sharma, S., Response characteristics of chemoceptive neurons in frog brain-stem.Indian J. Physiol. Pharmacol. 16 256 (1972).Google Scholar
  26. 26.
    Ramakrishna, T. and Dua-Sharma, S., Method for stereotaxic localization of brain-stem structures in frog.Indian Sci. Congr. Proc. 59 603 (1971).Google Scholar
  27. 27.
    Finney, D. J.,Probit analysis (Third edn.) Cambridge University Press (1971).Google Scholar
  28. 28.
    Bliss, C. I., The method of probits.Science, N.Y.,79 38–39 (1934).Google Scholar
  29. 29.
    Bliss, C. I., The method of probits—a correction.Science, N.Y.,79 409–410 (1934).Google Scholar
  30. 30.
    Fisher, R. A. and Yates, F.,Statistical Tables for Biological Agricultural and Medical Research (Sixth edn.) Edinburgh, Oliver and Boyd (1964).Google Scholar
  31. 31.
    Finney, D. J., The principles of biological assay.J. Roy. Statist. Soc. Suppl. 9 46–91 (1947).CrossRefGoogle Scholar
  32. 32.
    Finney, D. J., Satistical methods in biological assay (Second edn), London, Charles Griffin & Co. Ltd. (1964).Google Scholar
  33. 33.
    Pfaffmann, C., The sense of taste. InHandbook of Physiology, Neurophysiology, Washington. D.C., Am. Physiol. Soc. Sect. I, Vol.1. chap. 20, pp. 507–533 (1959).Google Scholar
  34. 34.
    Ramakrishna, T. and Sharma, K. N., Stereotaxic apparatus for frog brain.Indian J. Physiol. Pharmacol.,17 376–380 (1973).PubMedGoogle Scholar
  35. 35.
    Halpern, B. P., Chemotopic organisation in the bulbar gustatory relay of the rat.Nature, London.208 393–395 (1965).CrossRefGoogle Scholar
  36. 36.
    Cabanac, M., Pleasure in alimentary stimuli related to body weight.Fourth International Conference on regulation of food and water intake, Cambridge (2–6 August 1971).Google Scholar
  37. 37.
    Jacobs, H. A., Biocontrol systems in food intake. InBiomechanics, Plenum Press (1969).Google Scholar
  38. 38.
    Jacobs, H. L. and Sharma, K. N., Tasteversus calories: sensory and metabolic signals in the control of food intake.Ann. N.Y. Acad. Sci. 157 1084–1125 (1969).PubMedCrossRefGoogle Scholar
  39. 39.
    Le Magnen, J., Habits and food intake. InHandbook of Physiology Sect. 6,Alimentary Canal. Am. Physiol. Soc. Washington 11–30 (1967).Google Scholar
  40. 40.
    Nicolaidis, S., Early systemic responses to oro-gastric stimulation and their electrophysiological basis in the regulation of food and water balance.Ann. N.Y. Acad. Sci. 157 1176–1203 (1969).PubMedCrossRefGoogle Scholar
  41. 41.
    Sharma, K. N., Nutrition and neural controls in alimentary signalisation: periphery revisited.Indian Sci. Congr. Proc. 59 1–16 (1972).Google Scholar
  42. 42.
    Sudakov, K. Y. and Rogacheva, S. K., The afferent and efferent activity of the fiber of the vagus nerve during fasting and after taking food.Fed. Proc. Trans. Suppl. 22 306–310 (1962).Google Scholar
  43. 43.
    Sirotin, B. Z., Electrophysiological study of reception from certain internal organs in man. Rept. 1. Impulses from receptors of the resected stomach and small intestine.Bull. Exp. Biol. Med. USSR English Transl.50 873–877 (1961).Google Scholar
  44. 44.
    Sharma, K. N. and Nasset, E. S., Electrical activity in mesenteric nerves after perfusion of gut lumen.Am. J. Physiol. 202 725–730 (1962).PubMedGoogle Scholar
  45. 45.
    Carpenter, F. W., Nerve endings of sensory type in the muscular coat of the stomach and small intestine.J. Comp Neurol. 29 553–560 (1918).CrossRefGoogle Scholar
  46. 46.
    Yamamoto, T., On the innervation, especially sensory innervation, of the pars pylorica, the duodenum and the pancreas in formosan macaque.J. Comp. Neurol. 114 89–106 (1960).PubMedCrossRefGoogle Scholar
  47. 47.
    Pfaffmann, C., Physiological and behavioural processes of the sense of taste. InTaste and Smell in Vertebrates: A Ciba foundation symposium (ed. Wolstenholme, G. E. W. and J. Knight) J & A Churchill, London (1970).Google Scholar
  48. 48.
    Doetsch, G. S., Ganchrow, J. J., Nelson, L. M. and Erickson, R. P., Information processing in the taste system of the rat. InOlfaction and Taste, Ed. C. Pfaffmann, New York, Rockfeller University 492–511 (1969).Google Scholar
  49. 49.
    Erickson, R. P., Sensory neural patterns and gustation. InOlfaction and Taste, ed. Y. Zotterman, Oxford: Pergamon Press 205–215 (1963).Google Scholar
  50. 50.
    Erickson, R. P., Neural coding of taste quality. InThe Chemical Senses and Nutrition, ed. M. R. Kare and O. Maller, Baltimore: Johns Hopkins 313–328 (1967).Google Scholar
  51. 51.
    Erickson, R. P., Doetsch, G. S. and Marshall, D. A., The gustatory neural response function,J. Gen. Physiol.,49 247–263 (1965).CrossRefGoogle Scholar
  52. 52.
    Pfaffmann, C., Gustatory afferent impulses.J. Cellular Comp. Physiol. Psychol.,17 243–258 (1941).CrossRefGoogle Scholar
  53. 53.
    Pfaffmann, C., Gustatory nerve impulses in rat, cat and rabbit.J. Neurophysiol,18 429–440 (1955).PubMedGoogle Scholar
  54. 54.
    Mozell, M. M., The spatio-temporal analysis of odorants at the level of the olfactor sheet.J. Gen. Physiol. 50 25–41 (1966).PubMedCrossRefGoogle Scholar
  55. 55.
    O’Connell, R. J. and Mozell, M. M., Quantitative stimulation of frog olfactory receptors.J. Neurophysiol. 32 51–63 (1969).PubMedGoogle Scholar
  56. 56.
    Sharma, K. N., Anand, B. K., Dua-Sharma, S. and Singh, B., Role of stomach in the regulation of activities of hypothalamic feeding centres.Amer. J. Physiol. 201 593–598 (1961).PubMedGoogle Scholar
  57. 57.
    Morgane, P. J. and Jacobs, H. L., Hunger and satiety inWorld Review of Nutrition and Dietetics, Karger, New York10 100–213 (1969).Google Scholar
  58. 58.
    Sharma, K. N., Alimentary receptors and food intake regulation. InChemical Senses and Nutrition. (M. Kare, and O. Maller, eds.) Baltimore: Johns Hopkins Press 281–291 (1967b).Google Scholar

Copyright information

© Indian Academy of Sciences 1975

Authors and Affiliations

  • T. Ramakrishna
    • 1
    • 2
  • K. N. Sharma
    • 1
    • 2
  1. 1.Department of PhysiologySt. John’s Medical CollegeBangalore
  2. 2.Department of BiophysicsAll India Institute of Mental HealthBangalore

Personalised recommendations