Biosynthesis of vitamin C during germination

Part III. Effects of sugars, krebs’ intermediates, amino acids and B vitamins and correlation with biogenesis of nicotinic acid
  • Smita P. Bharani
  • Y. S. Shah
  • A. Sreenivasan


  1. (1)

    Further observations on the effects of certain cultural and environmental factors on biosynthesis of ascorbic acid in germinating seeds ofmüng (Phaseolus radiatus) are reported. Seed embryos separated from the reserve food store in cotyledons and grown on a semi-solid nutrient medium have been employed in some of these studies. Concomitant changes in nicotinic acid have been also followed.

  2. (2)

    In confirmation of earlier work, hexoses, particularly, glucose and mannose, have a pronounced enhancing effect on ascorbic acid formation.

  3. (3)

    Certain intermediates of carbohydrate metabolism such as citrate, succinate, fumarate and malate, induce increased synthesis of vitamin C; the effects of succinate and fumarate are noteworthy.

  4. (4)

    Thiamine, riboflavin, nicotinic acid and biotin stimulate ascorbic acid elaboration.

  5. (5)

    Accelerating effects are also noted with tryptophane, tyrosine, serine and glycine.

  6. (6)

    A parallelism between the biogeneses of ascorbic and nicotinic acids, under various cultural treatments is observed.

  7. (7)

    The possible implications of these observations have been discussed indicating probable involvement of hexose intermediates in ascorbic acid synthesis.



Ascorbic Acid Riboflavin Nicotinic Acid Fumarate Dehydroascorbic Acid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sreenivasan, A. and Wandrekar, S. D.Proc. Ind. Acad. Sci., 1950,32 B, 143.Google Scholar
  2. 2.
    Ray, S. N.Biochem. J., 1934,28, 996.PubMedGoogle Scholar
  3. 3.
    De, H. N. and Barai, S. C.Indian J. Med. Research, 1949,37, 101.Google Scholar
  4. 4.
    Mapson, L. W.J. Soc. Chem. Ind., 1943,62, 226.CrossRefGoogle Scholar
  5. 5.
    Sreenivasan, A. and Wandrekar, S. D.Nature, 1950,165, 318;Proc. Ind. Acad. Sci., 1950,32 B, 231.CrossRefGoogle Scholar
  6. 6.
    Roy, S. C., Roy, S. K. and Guha, B. C.Nature, 1946,158, 238.CrossRefGoogle Scholar
  7. 7.
    Burkholder, P. R. and Mc Veigh, I.Proc. Nat. Acad. Sci., 1942,28, 440.PubMedCrossRefGoogle Scholar
  8. 8.
    Chloe Klatzkin, Norris. F. W. and Wokes, F.Biochem. J., 1948,42, 414.Google Scholar
  9. 9.
    Banerjee, S. and Banerjee, R.Indian J. Med. Research, 1950,38, 153.Google Scholar
  10. 10.
    Krehl, W. A., Elvehjem, C. A. and Strong, F. M.J. Biol. Chem., 1944,156, 1.Google Scholar
  11. 11.
    Bharani, S. P.Ph.D. Thesis, University of Bombay, 1949.Google Scholar
  12. 12.
    Swaminathan, M.Indian J. Med. Research, 1940,27, 677.Google Scholar
  13. 13.
    Mapson, L. W. and Cruickshank, E. M.Biochem. J., 1947,41, 197.PubMedGoogle Scholar
  14. 14.
    Schweighert, B. S.Vitamins and Hormones, 1948,6, 55.CrossRefGoogle Scholar
  15. 15.
    Bonner, D. M. and Yanofsky, C.J. Nutrition, 1951,44, 603.Google Scholar
  16. 16.
    Sakami, W.J. Biol. Chem.,1949,178, 519.PubMedGoogle Scholar
  17. 17.
    Elwyn, D. and Sprinson, D. B. —, 1950,184, 475.PubMedGoogle Scholar
  18. 18.
    Neuberger, A., Muir, H. M. and Gray, C. H.Nature, 1950,105, 948.CrossRefGoogle Scholar
  19. 19.
    Shemin, D. and Rittenberg, D.J. Biol. Chem., 1947,167, 875.Google Scholar
  20. 20.
    Smythe, C. V. and King, C. G. —, 1942,142, 529.Google Scholar
  21. 21.
    Ray, S. N., Gyorgyi, P. and Harris, L.J. Biochem. J., 1935,29, 735.Google Scholar
  22. 22.
    Sure, B., Theis, R. M. and Harrelson, R. T.J. Biol. Chem., 1939,129, 245.Google Scholar
  23. 23.
    Kennaway, E. L. and Daff, M. E.Brit. J. Exptl. Path., 1946,27, 63.Google Scholar

Copyright information

© Indian Academy of Sciences 1953

Authors and Affiliations

  • Smita P. Bharani
    • 1
  • Y. S. Shah
    • 1
  • A. Sreenivasan
    • 1
  1. 1.Department of Chemical TechnologyUniversity of BombayIndia

Personalised recommendations