Trigonometric sums and fresnel-type integrals

  • R. D. Halbgewachs
  • S. M. Shah


If the partial sums of a trigonometric series are non-negative and two additional conditions are satisfied, then the given series is a Fourier series. One of these conditions is analysed here and necessary expansions and numerical values are given.


Positive Integer National Science Foundation Fourier Series Additional Condition Analogous Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chowla, S... “Some applications of a method of A. Selberg,”Jour. für die reine und Angewandte mathematik, 1965,217, 128–32.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Chidambaraswamy, J. and Shah, S. M. “Trigonometric sums and a method of Selberg,”Ibid., to appear.Google Scholar
  3. 3.
    Littlewood, J. E... “On the mean values of certain trigonometric polynomials,”Jour. Lond. Math. Soc., 1961,36, 307–34.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Luke, Yudell, L., Wyman Fair, Geraldine Coombs and Rosemary Moran “On a constant in the theory of trigonometric series,”Math. of Computation, 1965,90, 501–02.CrossRefGoogle Scholar
  5. 5.
    Nemeth, G... “Chebyshev expansions for Fresnel integrals,”Num. Math., 1965,7, 310–12.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Uchiyama, S... “On the mean modulus of trigonometric polynomials whose coefficients have random signs,”Proc. Amer. Math. Soc., 1965,16, 1185–90.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Zygmund, A. ..Trigonometric Series, Cambridge, 1959, Vol. 1.Google Scholar

Copyright information

© Indian Academy of Sciences 1967

Authors and Affiliations

  • R. D. Halbgewachs
    • 1
    • 2
  • S. M. Shah
    • 1
    • 2
  1. 1.Department of MathematicsUniversity of KansasLawrence
  2. 2.Department of MathematicsUniversity of KentuckyLexingtonU.S.A.

Personalised recommendations