Comparative study of some constitutive equations characterising non-Newtonian fluids

  • P. L. Bhatnagar


This paper compares, in a general way, the predictions of the constitutive equations given by Rivlin and Ericksen, Oldroyd, and Walters. Whether we consider the rotational problems in cylindrical co-ordinates or in spherical polar co-ordinates, the effect of the non-Newtonicity on the secondary flows is collected in a single parameterα which can be explicitly expressed in terms of the non-Newtonian parameters that occur in each of the above-mentioned constitutive equations. Thus, for a given value ofα, all the three fluids will have identical secondary flows. It is only through the study of appropriate normal stresses that a Rivlin-Ericksen fluid can be distinguished from the other two fluids which are indistinguishable as long as this non-Newtonian parameter has the same value.


Constitutive Equation Stress Component Secondary Flow Real Fluid Primary Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rivlin, R. S. and Ericksen, J. L.Jour. Rat. Mech. Anal., 1955,4, 329.MathSciNetGoogle Scholar
  2. 2.
    Oldroyd, J. G...Proc. Roy. Soc., 1950,200 A, 523.MathSciNetGoogle Scholar
  3. 3.
    Walters, K...Quart. Jour. Mech. Appl. Math., 1962,15, 63.MATHCrossRefGoogle Scholar
  4. 4a.
    Rosenblat, S...Jour. Fluid Mech., 1959,6, 206.MATHCrossRefMathSciNetGoogle Scholar
  5. 4b.
    —————.. Ibid., 1960,8, 388.MATHCrossRefMathSciNetGoogle Scholar
  6. 4c.
    Srivastava, A. C... Ibid., 1963,17, 171.MATHCrossRefGoogle Scholar
  7. 5a.
    Goldshtik, M. A...Inzhener, Fiz. Zh., 1960,3, 79.Google Scholar
  8. 5b.
    Bhatnagar, R. K...Proc. Ind. Acad. Sci., 1964,60, 99.MATHMathSciNetGoogle Scholar
  9. 5c.
    Thomas, R. H. and Walters, K.Quart. Jour. Mech. Appl. Math., 1964,17, 39.MATHCrossRefMathSciNetGoogle Scholar
  10. 5d.
    Bhatnagar, R. K. and Bhatnagar, K. S. To be published inProc. Nat. Inst. Sci., India.Google Scholar
  11. 5e.
    Haberman, W. L...Physics of Fluids, 1962,5, 625.CrossRefMathSciNetGoogle Scholar
  12. 5f.
    Bhatnagar, P. L. and Rajeswari, G. K.Ind. Jour. Math., 1963,5, 93.MATHMathSciNetGoogle Scholar
  13. 5g.
    Bhatnagar, P. L., Rajagopalan, Renuka and Mathur, M. N. To be published inIndian Jour. Math. Google Scholar
  14. 6a.
    —— and Rathna, S. L.Quart. Jour. Mech. Appl. Math., 1963,16, 329.MATHCrossRefMathSciNetGoogle Scholar
  15. 6b.
    Mohan Rao, D. K...Proc. Ind. Acad. Sci., 1963,56 A, 198.Google Scholar
  16. 6c.
    Bhatnagar, P. L., Bhatnagar, R. K. and Solomon, H. To be published inProc. Nat. Acad. Sci. Google Scholar

Copyright information

© Indian Academy of Sciences 1967

Authors and Affiliations

  • P. L. Bhatnagar
    • 1
  1. 1.Department of Applied MathematicsIndian Institute of ScienceBangalore 12India

Personalised recommendations