On an absolute constant in the theory of tauberian series (II)

  • C. T. Rajagopal


Limit Point Absolute Constant Small Positive Number Special Series Considerable Simplification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnew, R. P... “Abel transforms of Tauberian seriss,”Duke Math. J., 1945,12, 27–36.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    —.. “Integral transformations and Tauberian constants,”Trans. Amer. Math. Soc., 1952,72, 501–18.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Delange, H... “Sur les théorèmes inverses des procédés de sommation des séries divergentes (Premier Mémoire),”Ann. Sci. École. Norm. Sup. (3), 1950,67, 99–160.MATHMathSciNetGoogle Scholar
  4. 4.
    Garten, V... “Uber Taubersche Konstanten bei Cesàroschen Mittelbildungen,”Comment. Math. Helv., 1951,25, 311–35.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Karamata, J. ..Sur les théorèmes inverses des procédés de sommabilitié, 1937, (Act. sci. industr. No.450, VI).Google Scholar
  6. 6.
    Rajagopal, C. T... “On an absolute constant in Tauberian theory,”Proc. Ind. Acad. Sci., 1948,28A, 537–44. “Postscript,”Ibid., 1950,31A, 60–61.MathSciNetGoogle Scholar
  7. 7.
    —.. “On a generalization of Tauber’s theorem,”Comment. Math. Helv., 1950,24, 219–31.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    —.. “A generalization of Tauber’s theorem and some Tauberin constants,”Math. Z., 1953,57, 405–14.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 1954

Authors and Affiliations

  • C. T. Rajagopal
    • 1
  1. 1.Ramanujan Institute of MathematicsMadras

Personalised recommendations