The equatorial anomaly in ionospheric total electron content and the equatorial electrojet current strength

  • K. N. Iyer
  • M. R. Deshpande
  • R. G. Rastogi


Faraday Rotation of 40 and 41 MHz signals from the satellite BE-B (Explorer 22) recorded simultaneously at Ahmedabad (dip 34° N) and Kodaikanal (dip 3·4° N) during the years 1964–69 are used to derive the latitudinal profiles of Total Electron Content (TEC) over the Indian equatorial anomaly region. From these profiles the diurnal development of the equatorial anomaly and its correlation with equatorial electrojet strength are studied. The anomaly is found to maximise around 1400 LT,i.e., two-three hours after the electrojet attains its peak. The anomaly parameters such as the dip latitude of the anomaly peak,φ, the normalised depth,d, of the anomaly and the strength of the anomaly defined asS xd are found to be well correlated with the electrojet strength.


Total Electron Content Faraday Rotation Latitudinal Variation Vertical Total Electron Content Equatorial Anomaly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basu, S. and Das Gupta, A.,J. Geophys. Res. 73 5599 (1968).CrossRefGoogle Scholar
  2. 2.
    Titheridge, J. E. and Smith, W. D.,Planet Space Sci. 17 1667 (1969).CrossRefGoogle Scholar
  3. 3.
    Mendonca, F. de, Cantor, I. J. and Clemesha, B.,Low Latitude Ionospheric Electron Content Measurements During Half a Solar Cycle, Relat. Cient, LAFE-84 Lab de Fiscica, Espacial, Sao Jose dos Campos, Brazil (1969).Google Scholar
  4. 4.
    Golton, E. and Walker, G. O.,J. Atmos. Terr. Phys. 33 1 (1971).CrossRefGoogle Scholar
  5. 5.
    Rastogi, R. G., Sharma, R P. and Shodhan, V.,Planet Space Sci. 21 713 (1973).CrossRefGoogle Scholar
  6. 6.
    Rastogi, R. G., Iyer, K. N. and Bhattacharyya, J. C.,Curr. Sci. 44 531 (1975).Google Scholar
  7. 7.
    Dunford, E.,J. Atmos. Terr. Phys. 29 1489 (1967).CrossRefGoogle Scholar
  8. 8.
    Mac Dougall, J. W.,Radio Sci. 4 805 (1969).CrossRefGoogle Scholar
  9. 9.
    Rastogi, R. G. and Rajaram, G.,Indian J. Pure Appl. Phys. 9 531 (1971).Google Scholar
  10. 10.
    Rush, C. M. and Richmond, A. D.,J. Atmos. Terr. Phys. 35 1171 (1973).CrossRefGoogle Scholar
  11. 11.
    Das Gupta, A. and Basu, S.,Indian J. Pure Appl. Phys. 9 509 (1971).Google Scholar
  12. 12.
    Walker, G. O. and Ma, J. H. K.,J. Atmos. Terr. Phys. 34 1419 (1972).CrossRefGoogle Scholar
  13. 13.
    Basu, S. and Basu, S.,J. Geophys. Res. 76 5337 (1971).CrossRefGoogle Scholar
  14. 14.
    Kane, R. P.,J. Atmos. Terr. Phys. 35 1565 (1973).CrossRefGoogle Scholar
  15. 15.
    Kane, R. P.,Proc. Indian Acad. Sci. 78A 149 (1973).Google Scholar
  16. 16.
    Baxter, R. G. and Kendall, P. C.,Proc. R. Soc., LondonA304 171 (1968).Google Scholar
  17. 17.
    Sterling, D. L., Hanson, W. B., Moffett, R. J. and Baxter, R. G.,Radio Sci. 4 1005 (1969)CrossRefGoogle Scholar
  18. 18.
    Hedin, A. E. and Mayr, H. G.,J. Geophys. Res. 78 1688 (1973).CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1976

Authors and Affiliations

  • K. N. Iyer
    • 1
    • 2
  • M. R. Deshpande
    • 1
    • 2
  • R. G. Rastogi
    • 1
    • 2
  1. 1.Physical Research LaboratoryAhmedabad
  2. 2.Indian Institute of AstrophysicsKodaikanal

Personalised recommendations