Advertisement

Luminescence spectra and vibrations in crystal lattices

  • D. D. Pant
Article
  • 34 Downloads

Summary

A general survey of the known luminescence spectra of crystals is given. Those which give discrete spectra have been divided into seven classes. The luminescence spectrum of each of these crystals is examined to see what evidence it gives regarding the nature of the vibrations in the crystal lattices. Wherever possible the information thus obtained is supplemented by the evidence furnished by the complementary absorption spectra. It is shown that there is a mass of striking evidence indicating that vibrational frequencies are sharp and monochromatic in all crystals. Those luminescence spectra, which are not discrete are due to an electronic transition in which one or both the electronic states involved are not sharp and hence no evidence regarding the vibrational frequencies can be gained from them. It is remarkable that over the whole range of crystal structure—from the typical covalent crystal diamond to the typical Van der Waals crystal solid nitrogen— the vibrational frequencies are all sharp and monochromatic. The ionic crystals,e.g., the uranyl salts are also no exception to this rule. In many crystals some of the constituents,e.g., N2 in solid nitrogen, C6H6 in solid benzene, the UO2 ++ molecule in uranyl salts and so on, behave as if they are in the gaseous state. For example, the vibrational frequency observed in the fluorescence spectrum of solid benzene at very low temperatures is thus the same as that of the ground state of the C6H6 molecule, probably the only difference being that the observed bands are more discrete in the crystal state owing to the absence of the rotational lines.

Keywords

Fluorescence Spectrum Electronic Transition Vibrational Frequency Luminescence Spectrum Zinc Sulphide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    PringsheimFluorescenz und Phosphorescenz, Berlin, 1928. HirschlaffFluorescence and Phosphorescence, Metheun, 1938. BalySpectroscopy, Vol. II, 1927, 234. CurieLuminescence des corps solids, Paris, 1934. PerrinFluorescence, Paris, 1931.Acta Physica Polonica, 1936,5, 1–431.Trans. Farad. Soc., 1939,35, 1–238.Google Scholar
  2. 2.
    RandallNature, 1938,142, 113;Trans. Farad. Soc., 1939,35, 2.CrossRefGoogle Scholar
  3. 3.
    EwlesProc. Leeds Phil. Soc., 1935-40,3, 277 and 416;Proc. Roy. Soc., 1938,167, 34.Google Scholar
  4. 4.
    Randall and WilkinsReports on Progress in Physics, 1939,6, 174.CrossRefGoogle Scholar
  5. 5.
    BoisbaudronCompt. Rend., 1886,103, 468.Google Scholar
  6. 6.
    SpeddingTrans. Farad. Soc., 1939,35, 65.CrossRefGoogle Scholar
  7. 7.
    Raman, Sir C. V.Current Science, 1943,12, 33.Google Scholar
  8. 8.
    SeitzModern Theory of Solids, McGraw Hill Book Company, 1940. Gurney and MottElectronic Processes in Ionic Crystals, Oxford Univ. Press, 1940.Google Scholar
  9. 9.
    SeitzJ. Chem. Phys., 1938.,6, 150;Trans. Farad. Soc., 1939,35, 74.CrossRefGoogle Scholar
  10. 10.
    MilnerTrans. Farad. Soc., 1939.,35, 101. See also JohnsonJ. O. S. A., 1939,29, 387.CrossRefGoogle Scholar
  11. 11.
    Raman, Sir C. V.Proc. Ind. Acad. Sci., 194114, 459.Google Scholar
  12. 12.
    RamaswamyInd. J. Phys., 1930.,5, 97.Google Scholar
  13. 13.
    BhagavantamIbid., 1931,5, 169 and 573.Google Scholar
  14. 14.
    JohnIbid., 1931,6, 305.Google Scholar
  15. 15.
    Robertson, Fox and MartinPhil. Trans. Roy. Soc., 1934,232, 494.Google Scholar
  16. 16.
    NayarProc. Ind. Acad. Sci., 1941,13, 483; 1941,13, 534; 1941,14, 1; 1942,15, 293.Google Scholar
  17. 17.
    RandallProc. Roy. Soc., 1939,170, 272.CrossRefGoogle Scholar
  18. 18.
    KrögerPhysica, 1939.,6, 764.CrossRefGoogle Scholar
  19. 19.
    DeutschbeinAnn. d. Physik 1932.,14, 713; 1934,20, 828;Phy., Zeits., 1932,33, 874.Google Scholar
  20. 20.
    CandlerAtomic Spectra, Vol. II, 1937, Camb. Univ. Press.Google Scholar
  21. 21.
    GielessenAnn. d. Phys., 1935,22, 537.CrossRefGoogle Scholar
  22. 22.
    VenkateswaranProc. Ind. Acad. Sci., 1935,5, 459.Google Scholar
  23. 23.
    ThosarPhil. Mag., 1938,26, 878 and 380.Google Scholar
  24. 24.
    Anna Mani (Miss)Proc. Ind. Acad. Sci., 1942,15, 52.Google Scholar
  25. 25.
    SchnetzlerAnn. d. Phys., 1931.,10, 373.CrossRefGoogle Scholar
  26. 26.
    Snow and RawlinsProc. Camb. Phil. Soc., 1932,28, 522.CrossRefGoogle Scholar
  27. 27.
    SauerAnn. d. Phy., 1928,87, 197.CrossRefGoogle Scholar
  28. 28.
    Spedding and NuttingJ. Chem. Phys., 1934,2, 421.CrossRefGoogle Scholar
  29. 29.
    Krauss and NuttingIbid., 1941,9, 133.CrossRefGoogle Scholar
  30. 30.
    BetheAnn. d. Phy., 1929,3, 133.CrossRefGoogle Scholar
  31. 31.
    Haberlandt, Karlik and PriziramAkad. wiss Wien Ber., 1934,143, 151, etc.Google Scholar
  32. 32.
    TomaschekAnn. d. Phy.., 1927,84, 329 and 1047. Tomaschek and DeutschbeinIbid. Ann. d. Phy.,, 1933,16, 943. GobrechtIbid. Ann. d. Phys., 1937,28, 673. Deutschbein and TomaschekIbid. Ann. d. Phys., 1937,29, 311. Tomaschek and DeutschbeinGlastech Ber., 1938,16, 155. Also TomaschekTrans. Farad. Soc., 1939,35, 148.CrossRefGoogle Scholar
  33. 33.
    — and MehnertAnn. d. Phys., 1937,29, 306.CrossRefGoogle Scholar
  34. 34.
    Deutschbein and Tomaschek.Ibid.,, 1937,29, 306.Google Scholar
  35. 35.
    ChatterjiZeit. f. Phy., 1939,113, 96.CrossRefGoogle Scholar
  36. 36.
    TomaschekIbid.,, 1932,33, 878; see also Tomaschek,Acta Physica Polonica, 1936,5, 393.Google Scholar
  37. 37.
    Bethe and SpeddingPhy. Rev., 1937,52, 454. GobrechtAnn. d. Phy., 1937,28, 673. Van VleckJ. Phy. Chem., 1937,41, 67. EllisPhy. Rev., 1936,49, 875. MukherjiInd. J. Phys., 1937,11, 123.CrossRefGoogle Scholar
  38. 38.
    Spedding, Hamlin and NuttingJ. Chem. Phy., 1937,5, 191. Spedding and HamlineIbid., J. Chem. Phy., p. 429. Spedding, Howe and KellerIbid., J. Chem. Phy., p. 417. Spedding, Moss and WalkerIbid., J. Chem. Phy., 1940,8, 908. Freed and WeissmanIbid., J. Chem. Phy., 1940,8, 878.CrossRefGoogle Scholar
  39. 39.
    EwaldAnn. d. Phy., 1939,34, 209.CrossRefGoogle Scholar
  40. 40.
    Howe and HerbertJ. Chem. Phy., 1939,7, 277.CrossRefGoogle Scholar
  41. 41.
    Weissman and FreedIbid.,, 1940,8, 227 and 840. See also FreedRev. Mod. Phy., 1942,14, 105.CrossRefGoogle Scholar
  42. 42.
    HellwegeZeit. f. Phy., 1939,113, 192.CrossRefGoogle Scholar
  43. 43.
    HilschZeit. f. Phys., 1927,44, 860;Proc. Phy. Soc. (extra part), 1937,49, 40. PohlIbid., Zeit. f. Phys., 1937,49, 3, etc. See also PringheimRev. Mod. Phy., 1942,14, 132.CrossRefGoogle Scholar
  44. 44.
    HippleZeit. f. Phy., 1936,101, 680.CrossRefGoogle Scholar
  45. 45.
    See for instance, Lenard and TomaschekHandbuch der exp. Phy., 1928,13, 1, 2.Google Scholar
  46. 46.
    SchmidtAnn. d. Phy., 1932,12, 211.CrossRefGoogle Scholar
  47. 47.
    SchellenbergIbid.,, 1932,13, 249.CrossRefGoogle Scholar
  48. 48.
    HowesCarnegie Inst. Wash. Report, No. 384, 1928.Google Scholar
  49. 49.
    TolksdorfZ. Phy. Chem., 1928,132, 161.Google Scholar
  50. 50.
    ServigneCompt. Rend., 1935,200, 2015. IwaseInst. Phy. Chem. Research Sci. Paper, Tokyo, 1935,561, 1.Google Scholar
  51. 51.
    LevyJ. Rontgen Soc., 1916,12, 13.Google Scholar
  52. 52.
    Nichols and HowesCorngie, Inst. Wash. Report, No. 298.Google Scholar
  53. 53.
    —, Mabel and SlatteryJ. O. S. A., 1926,449, 12.Google Scholar
  54. 54.
    Dieke and Van HeelLeiden Communications, 1925, Suppl. No. 55A.Google Scholar
  55. 55.
    Van HeelIbid., Leiden Communications, 1925, Suppl. No. 55B.Google Scholar
  56. 56.
    Conn and WuTrans. Farad. Soc., 1938,34, 1483.CrossRefGoogle Scholar
  57. 57.
    SatyanarayanaProc. Ind. Acad. Sci., 1942,15, 414.Google Scholar
  58. 58.
    Raman, Sir C. V.Trans. Farad. Soc., 1929,25, 781.CrossRefGoogle Scholar
  59. 59.
    Kistiakowsky and NellsPhy. Rev., 1932,41, 595. Cuthbertson and KistiakowskyJ. Chem. Phy., 1936,4, 9.CrossRefGoogle Scholar
  60. 60.
    ReimannAnn. d. Phy., 1926,80, 43. Pringsheim and KronenbergerZeit. f. Phy., 1926,40, 75. KronenbergerIbid., Zeit. f. Phy., 1930,63, 494. See also TiteicaActa Physica Polonica, 1936,5, 381.CrossRefGoogle Scholar
  61. 61.
    For a list, see Sponer and TellerRev. Mod. Phy., 1941,13, 76. SklarIbid., Rev. Mod. Phy., 1942,14, 232.CrossRefGoogle Scholar
  62. 62.
    E.g., Sponer, Nordheim, Sklar and TellerJ. Chem. Phy., 1939,7, 207.CrossRefGoogle Scholar
  63. 63.
    VegardComm. Lab. Leiden, No. 175.Google Scholar
  64. 64.
    For example, see VegardAnn. d. Phy., 1926,79, 377;Comm. Lab. Leiden, No. 183, 200 and supplementary No. 59.CrossRefGoogle Scholar
  65. 65.
    Nature, 1929,124, 267 and 337;Zeit. f. Phy., 1928,58, 497.CrossRefGoogle Scholar
  66. 66.
    Ann. d. Phy., 1930,6, 487.CrossRefGoogle Scholar
  67. 67.
    See JevonsReport on Band Spectra of Diatomic Molecules, p. 284.Google Scholar
  68. 68.
    KaplanPhy. Rev., 1934,45, 534.Google Scholar
  69. 69.
    VegardNature, 1935,135, 1073; 1934,134, 697.CrossRefGoogle Scholar
  70. 70.
    Ibid.,, 1930,125, 14.CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1943

Authors and Affiliations

  • D. D. Pant
    • 1
  1. 1.Department of PhysicsIndian Institute of ScienceBangalore

Personalised recommendations