The specific heats of crystals

Part III. Analysis of the experimental data
  • C. V. Raman


The functional dependence of the specific heat of a crystal on the temperature may with advantage be expressed as a variation with temperature of the effective average frequency of the atomic oscillators, the same being determined from the argument of the Einstein function which gives the observed specific heat at that temperature. The usefulness of this representation is shown in the paper by a detailed discussion of the experimental data for diamond. It emerges that the distribution of frequencies adopted in the Debye theory is irreconcilable with the observed course of the frequency-temperature curve. It is also pointed out that the large excess which the specific heat calculated from that theory exhibits over the observed values in the region of low temperatures shows that the ideas on which that theory is based are misconceived and that the theory itself is untenable.


Arithmetical Average Effective Frequency Debye Function Debye Theory Specific Heat Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Indian Academy of Sciences 1956

Authors and Affiliations

  • C. V. Raman
    • 1
  1. 1.Memoir No. 91 from the Raman Research InstituteBangalore-6

Personalised recommendations