, 21:57 | Cite as

Blood flow and oxygenation status of human tumors

Clinical investigations
  • Horst J. Feldmann
  • Michael Molls
  • Peter Vaupel


There is a large body of evidence suggesting that blood flow and oxygenation of human tumors are important research topics which may explain, in particular, resistance to radiation to many antineoplastic drugs, which can limit the curability of solid tumors by radiotherapy and chemotherapy. This manuscirpt reviews the clinical investigations which have been performed regarding blood flow and oxygenation status of human tumors in radiation oncology.

The possible uses and limitations of the prognostic significance and the changes under therapy measuring blood flow and oxygenation in human tumors were discussed. In addition several aproaches were summarized, which can improve the microvascular O2 availability and perfusion-limited O2 delivery. The clinical data concerning the prognostic significance of blood flow, vascular function and oxygenation of human tumors are relevant for patient selection in clinical oncology. Strategies to improve traditional cancer therapy by modulation of the oxygenation status remain quite promising but more critical research and sophisticated clinical studies are necessary before its true potential is known.

Key Words

Blood perfusion Oxygenation of human tumors Prognostic significance Modulation of tumor oxygenation 

Durchblutungs- und Oxygenierungsstatus von Tumoren beim Menschen. Klinische Untersuchungen


Das Tumormikromilieu ist ein wesentlicher Faktor, der das Ansprechen von Tumoren auf konservative Behandlungsverfahren und damit die Heilungschancen gegenüber Strahlen- und/oder Chemotherapie bestimmt. Die folgende Übersicht greift die wichtigsten Parameter des Mikromilieus, die in der klinischen Strahlentherapie untersucht wurden, auf: die Tumorvaskularisierung, Tumordurchblutung und die Oxygenierung solider Tumoren.

Die klinischen Messungen zur Durchblutung und Tumoroxygenierung werden prätherapeutisch sowie im Verlauf unter Strahlentherapie zusammenfassend dargestellt und ihre prognostische Wertigkeit diskutiert. Darüber hinaus wird auf klinische Versuche eingegangen, die zu einer Verbesserung des intravaskulären Sauerstoffgehalts sowie einer Verbesserung der Mikrozirkulation führen und damit die diffusions- und perfusionslimitierte Sauerstoffverfügbarkeit überwinden können. Die klinischen Ergebnisse zur prognostischen Bedeutung von Tumordurchblutung und Oxygenierung werden zukünftig für die Selektion von Patienten und die Individualisierung der Tumotherapie von Bedeutung sein. Ansätze, die Therapieergebnisse konventioneller Verfahren durch beeinflussung der Tumoroxygenierung zu verbessern, sind vielversprechend, müssen allerdings im Rahmen systematischer klinischer Studien geprüft werden.


Durchblutung Tumoroxygenierung Prognostische Wertigkeit Beeinflussung der Oxygenierung 


  1. 1.
    Acker JC, Dewhirst MW, Honore GM, et al. Blood perfusion measurements in human tumors: evaluation of laser Doppler methods. Int J Hyperthermia 1990;6:287–304.PubMedCrossRefGoogle Scholar
  2. 2.
    Beaney RP, Lammertsma AA, Jones T, et al. Positron emission tomography for in vivo measurements of regional blood flow, oxygen utilisation, and blood volume in patients with breast carcinoma. Lancet 1984;1:131–4.PubMedCrossRefGoogle Scholar
  3. 3.
    Becker A, Hänsgen G, Bloching M, et al. Oxygenation of squamous cell carcinoma of the head and neck: comparison of primary tumors, neck node metastases, and normal tissue. Int J Radiat Oncol Biol Phys 1998; 42:35–41.PubMedGoogle Scholar
  4. 4.
    Becker A, Hänsgen G, Richter C, et al. Oxygenierungstatus von Plattenepithelkarzinomen der Kopf-, Halsregion. Strahlenther Onkol 1998;174:484–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Brizel DM, Rosner G, Harrelson J, et al. Pretreatment oxygenation profiles of human soft tissue sarcoinas. Int J Radiat Oncol Biol Phys 1994;30:635–42.PubMedGoogle Scholar
  6. 6.
    Brizel DM, Rosner GL, Prosnitz LR, et al. Patterns and variability of tumor oxygenation in human soft tissue sarcomas, cervical carcinomas, and lymph node metastases. Int J Radiat Oncol Biol Phys 1995;32:1121–5.PubMedGoogle Scholar
  7. 7.
    Brizel DM, Scully SP, Harrelson JM, et al. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996;56:941–3.PubMedGoogle Scholar
  8. 8.
    Brizel DM, Sibley GS, Prosnitz LR, et al. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Biol J Radiat Biol Oncol Phys 1997;38:285–9.Google Scholar
  9. 9.
    Brooks TJ, Beaney R-P, Lammertsma AA, et al. Studies on regional cerebral haematocrit and blood flow in patients with cerebral tumors using positron emission tomography. Microvasc Res 1986;31:267–76.PubMedCrossRefGoogle Scholar
  10. 10.
    Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities and problems for cancer therapy. Cancer Res 1998;58:1408–16.PubMedGoogle Scholar
  11. 11.
    De Vita VT, Hellman S, Rosenberg SA. Cancer: principles and practice of oncology. Philadelphia: Lippincott Raven, 1997.Google Scholar
  12. 12.
    Dewhirst M. Concepts of oxygen transport at the microcirculatory level. Sem Radiat Oncol 1998;8:143–50.CrossRefGoogle Scholar
  13. 13.
    Dusenbery KE, Mc Guire WA, Holt D, et al. Erythropoetin increases hemoglobin during radiation therapy for cervical cancer. Int J Radiat Oncol Biol Phys 1994;29:1079–84.PubMedGoogle Scholar
  14. 14.
    Eble MJ, Lohr F, Wannenmacher M. Oxygen tension distribution in head and neck carcinomas after peroral oxygen therapy. Onkologie 1995;18:136–40.CrossRefGoogle Scholar
  15. 15.
    Falk SJ, Ward R, Bleehan NM. The influence of carbogen breathing on tumor tissue oxygenation in man evaluated by computerised pO2 histography. Br J Cancer 1992;66:919–24.PubMedGoogle Scholar
  16. 16.
    Feldmann HJ, Molls M, Hoederath A, et al. Blood flow and steady state temperatures in deep seated tumors and normal tissues. Int J Radiat Oncol Biol Phys 1992;23:1003–8.PubMedGoogle Scholar
  17. 17.
    Feldmann HJ, Molls M, Füller J, et al. Changes in oxygenation patterns of locally advanced recurrent tumors under thermoradiotherapy. Adv Exp Med Biol 1994;345:479–83.PubMedGoogle Scholar
  18. 18.
    Feldmann HJ, Molls M, Vaupel P. Clinical investigations on blood perfusion in human tumors. In: Molls M, Vaupel P, eds. Blood perfusion and microenvironment of human tumors. Berlin-Heidelberg-New York: Springer, 1998:47–72.Google Scholar
  19. 19.
    Feldmann HJ, Sievers K, Füller J, et al. Evaluation of tumor blood perfusion by dynamic NMI and CT in patients undergoing thermoradiotherapy. Eur J Radiol 1993;16:224–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Fleckenstein W, Jungblut JR, Suckfall M. Distribution of oxygen pressure in the periphery and centre of malignant head and neck tumors. In: Ehrly AM, Fleckenstein W, Hauss J, et al., eds. Clinical oxygen pressure measurement II. Berlin: Blackwell Ueberreuter, 1990:81–90.Google Scholar
  21. 21.
    Fleckenstein W, Jungblut JR, Sudkfüll M, et al. Sauerstoffdruckvertcilungen in Zentrum und Peripherie maligner Kopf-Halstumoren. Mund Kiefer Gesichtschir 1993;12:205–11.Google Scholar
  22. 22.
    Füller J, Feldmann HJ, Molls M, et al. Untersuchungen zum Sauerstoffpartialdruck im Tumorgewebe, unter Radio- und Thermoradiotherapie. Strahlenther Onkol 1994;178:453–60.Google Scholar
  23. 23.
    Fyles AW, Milosevic M, Wong R, et al. Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 1998;48:149–56.PubMedCrossRefGoogle Scholar
  24. 24.
    Giaccia AJ. Hypoxic stress proteins: survival of the fittest. Semin Radiat Oncol 1996;6:46–58.PubMedCrossRefGoogle Scholar
  25. 25.
    Graeber TG, Osmanian C, Jacks T, et al. Hypoxia mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 1996;379:88–91.PubMedCrossRefGoogle Scholar
  26. 26.
    Grau C, Overgaard J. Significance of hemoglobin concentration for treatment outcome. In: Molls M, Vaupel P, eds. Blood perfusion and microenviromnent of human tumors. Berlin-Heidelberg-New York: Springer, 1998:101–12.Google Scholar
  27. 27.
    Griffiths JR, Taylor NJ, Howe FA. The response of human tumors to carbogen breathing, monitored by gradient-recalled echo magnetic resonance imaging. Int J Radiat Oncol Biol Phys 1997;39:697–701.PubMedGoogle Scholar
  28. 28.
    Hall EJ. Radiobiology for the radiologist. Philadelphia: Lippincott, 1994.Google Scholar
  29. 29.
    Hawighorst H, Knapstein PG, Schaeffer U. Pelvic lesions in patients with treated cervical carcinoma: efficacy of pharmacokinetic analysis of dynamic NMI images in distinguishing recurrent tumors from benign conditions. Am J Roentgenol 1996;166:401–8.Google Scholar
  30. 30.
    Hawighorst H, Engenhart R, Knopp MV, et al. Intracranial meningeomas: time and dose dependent effects of irradiation on blood flow, vascular permeability and interstitial space monitored by dynamic MR imaging. Am J Roentgenol (in press).Google Scholar
  31. 31.
    Hermans R, Lambin P, van den Bogaert W, et al. Non-invasive tumor perfusion measurement by dynamic CT: preliminary results. Radiother Oncol 1997;44:159–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Höckel M, Schlenger K, Knoop C, et al. Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res 1991;51:6098–102.PubMedGoogle Scholar
  33. 33.
    Höckel M, Knoop C, Schlenger K, et al. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 1993;26:45–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Höckel M, Vorndran B, Schlenger K, et al. Tumor oxygenation: A new predictive parameter in locally advanced cancer of the uterine cervix. Gynecol Oncol 1993;51:141–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Höckel M, Schlenger K, Aral B, et al. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509–15.PubMedGoogle Scholar
  36. 36.
    Höckel M, Vaupel P. The prognostic significance of hypoxia in cervical cancer: A radiobiological or tumor biological phenomenon? In: Molls M, Vaupel P., eds. Blood perfusion and microenvironment of human tumors. Berlin-Heidelberg-New York: Springer, 1998:73–9.Google Scholar
  37. 37.
    Hohenberger P, Dragon S. In situ oxygen partial pressure measurements in human soft tissue sarcomas. In: Vaupel PW, Kelleher DK, Günderoth M, eds. Tumor oxygenation. Stuttgart: Fischer, 1995:327–33.Google Scholar
  38. 38.
    Hohenberger P, Strauss LG, Lehner P, et al. Perfusion of colorectal liver metastases and uptake of fluorouracil assessed by H2 and [18F] uracil positron emission tomography (PET). Eur J Cancer 1993;29:1682–6.CrossRefGoogle Scholar
  39. 39.
    Ito M, Lammertsma AA, Wise RJS, et al. Measurement of regional cerebral blood flow and oxygen utilisation in patients with cerebral tumors using15O and positron emission tomography: Analytical techniques and preliminary results. Neuroradiology 1982;23:63–74.PubMedCrossRefGoogle Scholar
  40. 40.
    Jund R, Feldmann HJ, Molls M. Der Sauerstoffpartialdruck im Gewebe menschlicher Kopf-. Halskarzinome während primärer Radiochemotherapie. Laryngo-Rhino-Otol 1996;75:43–7.CrossRefGoogle Scholar
  41. 41.
    Kallinowski F, Buhr HJ. Tissue oxygenation of primary, metastatic and xenografted rectal cancers. In: Vaupel P, Kelleher DK, Günderoth M, eds. Tumor oxygenation. Stuttgart: Fischer. 1995:205–9.Google Scholar
  42. 42.
    Kedar RP, Cosgrove DD, Smith IE, et al. Breast carcinoma: measurements of tumor response to primary medical therapy with color Doppler flow imaging. Radiology 1994;190:825–30.PubMedGoogle Scholar
  43. 43.
    Kelleher DK, Vaupel PW. Nicotinamide exerts different acute effects on microcirculatory function and tissue oxygenation in rat tumors. Int J Radiat Oncol Biol Phys 1993;26:95–102.PubMedGoogle Scholar
  44. 44.
    Kelleher DK, Matthiensen U, Thews D, et al. Blood flow, oxygenation and bioenergetic status of tumors after erythropoietin treatment in normal and anemic rats. Cancer Res 1996; 56:4728–34.PubMedGoogle Scholar
  45. 45.
    Lagendijk JJW, Hofman P, Schipper J. Perfusion analysis in advanced breast carcinoma during hyperthermia. Int J Hyperthermia 1988;4:479–95.PubMedCrossRefGoogle Scholar
  46. 46.
    Lahtinen T, Karjalainen P, Alhava M. Measurement of bone blood flow with a 133Xe washout method. Eur J Nucl Med 1979;4:435–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Lammertsma AA, Wise RJS, Cox TCS, et al. Measurement of blood flow, oxygen utilisation, oxygen extraction ratio, and fractional blood volume in human brain tumors and surrounding oedematous tissue. Br J Radiol 1985;58:725–34.PubMedGoogle Scholar
  48. 48.
    Lartigau E, Vitu L, Haie-Mederer C. Feasibillty of measuring oxygen tension in uterine cervix carcinoma. Eur J Cancer 1992;28A:1354–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Lartigau E, Le Ridant AM, Lambin P, et al. Oxygenation of head and neck tumors. Cancer 1993;71:2319–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Lartigau E, Lusinchi A, Weeger P, et al. Variations in tumor oxygen tension (PO2) during accelerated radiotherapy of head and neck carcinoma. Eur J Cancer 1998;34:856–61.PubMedCrossRefGoogle Scholar
  51. 51.
    Lee WJ, Chu JS, Huang CS, et al. Breast cancer vascularity: color Doppler sonography and histopathology study. Breast Cancer Res Treat 1996;37:291–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Lyng H, Sundfor K, Tanum G, et al. Oxygen tension and vascular density in human cervix carcinoma. Br J Cancer 1996;74:1559–63.PubMedGoogle Scholar
  53. 53.
    Lyng H, Sundfor K, Tanum G, et al. Oxygen tension in primary tumours of the uterine cervix and lymph node metastases of the head and neck. Adv Exp Med Biol (in press).Google Scholar
  54. 54.
    Mäntylä MJ. Regional blood flow in human tumors. Cancer Res 1979;39:2304–6.PubMedGoogle Scholar
  55. 55.
    Mäntylä MJ, Heikkonen J, Licphil J, et al. Regional blood flow in human tumors measured with argon, krypton and xenon. Br J Radiol 1988;61:379–82.PubMedCrossRefGoogle Scholar
  56. 56.
    Martin L, Lartigau E, Weeger P, et al. Changes in the oxygenation of head and neck tumours during carbogen breathing. Radiother Oncol 1993;27:123–30.PubMedCrossRefGoogle Scholar
  57. 57.
    Mattern J, Kallinowski F, Herfarth C, et al. Association of resistance-related protein expression with poor vascularization and low levels of oxygen in human rectal cancer. Int J Cancer 1996;67:20–3.PubMedCrossRefGoogle Scholar
  58. 58.
    Molls M, Feldmann HJ. Clinical investigations on blood flow in malignant tumors of the pelvis and abdomen. In: Vaupel P, Jain RK, eds. Tumor blood supply and metabolic microenvironment: Characterization and implications for therapy. Stuttgart: Fischer, 1991:143–53.Google Scholar
  59. 59.
    Molls M, Feldmann HJ, Stadler P, et al. Changes in tumor oxygenation during radiation therapy. In: Molls M, Vaupel P, eds. Blood perfusion and microenvironment of human tumors. Berlin-Heidelberg-New York: Springer, 1998:81–7.Google Scholar
  60. 60.
    Molls M, Vaupel P. The impact of the tumor microenvironment on experimental and clinical radiation oncology and other therapeutic modalities. In: Molls M, Vaupel P, eds. Blood perfusion and microenvironment of human tumors. Berlin-Heidelberg-New York: Springer, 1998:1–3.Google Scholar
  61. 61.
    Nordsmark M, Bentzen SM, Overgaard J. Measurement of human tumor oxygenation status by a polarographic needle electrode. Acta Oncol 1994;33:383–9.PubMedCrossRefGoogle Scholar
  62. 62.
    Nordsmark M, Overgaard M, Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 1996;41:31–9.PubMedGoogle Scholar
  63. 63.
    Nyström C, Forssman L, Roos B. Myometrial blood flow studies in carcinoma of the corpus uteri. Acta Radiol Ther 1969;8:193–8.Google Scholar
  64. 64.
    Overgaard J, Horsman MR. Modification of hypoxia induced radioresistance in tumors by the use of oxygen and sensitizers. Semin Radiat Oncol 1996;6:10–21.PubMedCrossRefGoogle Scholar
  65. 65.
    Perez CA, Brady L. Principles and practice of radiation oncology. 3rd edn. Philadelphia: Lippincott, 1997.Google Scholar
  66. 66.
    Pirhonen JP, Grenman SA, Bredback AB, et al. Effects of external radiotherapy on uterine blood flow in patients with advanced cervical carcinoma assessed by color Doppler ultrasonography. Cancer 1995;76:67–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Powell MEB, Hill SA, Saunders MI, et al. Human tumor blood flow is enhanced by nicotinamide and carbogen breathing. Cancer Res 1997;57:5261–4.PubMedGoogle Scholar
  68. 68.
    Rampling R, Cruickshank G, Lewis AD, et al. Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumours. Int J Radiat Oncol Biol Phys 1994; 29: 427–32.PubMedGoogle Scholar
  69. 69.
    Robinson SP, Howe FA, Rodrigues LM, et al. Magnetic resonance imaging techniques for monitoring changes in tumor oxygenation and blood flow. Sem Radiat Oncol 1998;8:197–207.CrossRefGoogle Scholar
  70. 70.
    Rockwell S. Oxygen delivery: implications for the biology and therapy of solid tumors. Oncol Res 1997;9:383–90.PubMedGoogle Scholar
  71. 71.
    Runkel S, Wischnik A, Tenbuer J, et al. Oxygenation of mammary tumors as evaluated by ultrasound-guided computerized-pO2-histography. Adv Exp Med Biol 1994;345:451–8.PubMedGoogle Scholar
  72. 72.
    Russo CA, Weber TK, Volpe CM. An anoxia inducible endonuclease and enhanced DNA breakage as contributors to genomic instability in cancer. Cancer Res 1995;55:1122–8.PubMedGoogle Scholar
  73. 73.
    Samulski TV, Fessenden P, Valdagni R, et al. Correlations of thermal washout rate, steady state temperatures, and tissue type in deep seated recurrent or metastatic tumors. Int J Radiat Oncol Biol Phys 1987; 13:907–16.PubMedGoogle Scholar
  74. 74.
    Saumweber DM, Kau RJ, Arnold W. Tumor tissue oxygenation in primary squamous cell carcinomas of the head and neck—preliminary results. In: Vaupel PW, Kelleher DK, Günderoth M, eds. Tumor oxygenation. Stuttgart: Fischer, 1995;313–8.Google Scholar
  75. 75.
    Secomb TW, Hsu R, Ong ET. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol 1995;34:313–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Sievers KW, Feldmann HJ, Füller J, et al. Über die Wertigkeit der dynamischen MRT in der Perfusionsbeurteilung von Bekentumoren unter Hyperthermie. Fortschr Röntgenstr 1993;19:245–50.CrossRefGoogle Scholar
  77. 77.
    Stadler P, Feldmann HJ, Creighton C, et al. Changes in tumor oxygenation during a combined treatment with split course radiotherapy and chemotherapy in patients with head and neck cancer. Radiother Oncol 1998;48:157–64.PubMedCrossRefGoogle Scholar
  78. 78.
    Stadler P, Becker A, Feldmann HJ, et al. Influence of the hypoxic subvolume on the prognosis of head and neck cancer. Int J Radiat Oncol Biol Phys 1998:42:Suppl:147.Google Scholar
  79. 79.
    Strnad V, Keilholz L, Kirschner M, et al. Sauerstoffdruck verteilung in Lymphknotenmetastasen und die Veränderungen während akuter respiratorischer Hypoxie. Strahlenther Onkol 1997;173:267–71.PubMedCrossRefGoogle Scholar
  80. 80.
    Sutherland RM, Ausserer W, Murphy B, et al. Tumor hypoxia and heterogeneity: challenges and opportunities for the future. Semin Radiat Oncol 1996;6:59–70.PubMedCrossRefGoogle Scholar
  81. 81.
    Terris DJ, Dunphy EP. Oxygen tension measurements of head and neck cancers. Arch Otolaryngol Head Neck Surg 1994;120:283–7.PubMedGoogle Scholar
  82. 82.
    Thews O, Koenig R, Kelleher DK, et al. Enhanced radiosensitivity in experimental tumors following erythropoietin treatment of chemotherapy-induced anemia. Br J Cancer 1998;78:752–6.PubMedGoogle Scholar
  83. 83.
    Thomlinson RE, Gray LH. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer 1955;9:539–49.PubMedGoogle Scholar
  84. 84.
    Vaupel P. Blood flow, oxygenation, tissue pH distribution, and bioenergetic status of tumors. In: Ernst Schering Research Foundation Lecture, Vol. 23. Information and standards. Berlin: Medical Scientific Publ., 1994.Google Scholar
  85. 85.
    Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989;49:6449–65.PubMedGoogle Scholar
  86. 86.
    Vaupel P, Schlenger K, Knoop C, et al. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 1991;51:3316–22.PubMedGoogle Scholar
  87. 87.
    Vaupel P. Tumor blood flow. In: Molls M, Vaupel P, eds. Blood perfusion and microenvironment of human tumors. Berlin-Heidelberg-New York: Springer, 1998:41–5.Google Scholar
  88. 88.
    Vaupel P, Höckel M. Oxygenation of human tumors. In: Molls M, Vaupel P, eds. Blood perfusioni and microenvironment of human tumors. Berlin-Heidelberg-New York: Springer, 1998: 63–72.Google Scholar
  89. 89.
    Vaupel P, Kelleher DK, Thews O. Modulation of tumor oxygenation. Int J Radiat Oncol Biol Phys (in press).Google Scholar
  90. 90.
    Wust P, Stahl H, Löffel J, et al. Clinical physiological and anatomical determinants for radiofrequency hyperthermia. Int J Hyperthermia 1995;11:151–67.PubMedCrossRefGoogle Scholar
  91. 91.
    Zywietz F, Reeker W, Kochs E. Tumor oxygenation in a transplanted rat rhabdomyosarcoma during fractionated irradiation. Int J Radiat Oncol Biol Phys 1995;32:1391–400.PubMedGoogle Scholar

Copyright information

© Urban & Vogel 1999

Authors and Affiliations

  • Horst J. Feldmann
    • 1
  • Michael Molls
    • 1
  • Peter Vaupel
    • 2
  1. 1.Klinik und Poliklinik für Strahlentherapie und Radiologische OnkologieKlinikum rechts der Isar der Technischen UniversitätMünchen
  2. 2.Institut für Physiologie und Pathophysiologie der Universität MainzMainzDeutschland

Personalised recommendations