Advertisement

Herz

, Volume 23, Issue 2, pp 130–134 | Cite as

Analyse der Unterarmzirkulation — Ein Surrogat für die Diagnostik koronarer Durchblutungsstörungen?

  • Gunter Rosenberger
  • Stephan Fichtlscherer
Koronare Atherosklerose — Funktionelle Konsequenzen

Zusammenfassung

Dem Gefäßendothel kommt eine zentrale Rolle in der Regulation des arteriellen Gefäßtonus und bei der Steuerung der lokalen Hämostase zu. Auch ist das Gefäßendothel regulierend an Proliferationsprozessen der Gefäßwand beteiligt. Beim Vorliegen von Risikofaktoren für die koronare Herzerkrankung bzw. beim Vorliegen einer klinisch manifesten kardialen Durchblutungsstörung ist die endotheliale Gefäßregulation beeinträchtigt. Eine endothelvermittelte Gefäß-dilatation läßt sich durch die intraarterielle Gabe von Acetylcholin erzielen.

Atherosklerotische Veränderungen der Koronararterien verlaufen parallel zur Atherosklerose der Arteria brachialis; die endotheliale Dysfunktion der Koronararterien ist mit der endothelvermittelten Gefäßregulationsstörung der Arteria brachialis vergleichbar.

Eine nichtinvasive Untersuchung der endothelvermittelten Gefäßregulation ist mittels Ultraschalluntersuchung der Arteria brachialis möglich. Aufgrund methodischer Schwierigkeiten resultiert jedoch eine große Streubreite der Einzelwerte.

Mittels venöser Unterarmverschlußplethysmographie ist semiinvasiv die Messung des Unterarmblutflusses möglich. Die endothelvermittelte Zunahme des Unterarmblutflusses wird durch die Infusion von Acetylcholin in die Arteria brachialis erreicht. Die Infusion von Natriumnitroprussid bewirkt eine endothelunabhängige Zunahme des Unterarmblutflusses und gilt als Maß der NO-vermittelten vasodilatatorischen Kapazität.

Unter der Voraussetzung eines generalisierten Krankheitsprozesses der Atherosklerose sind die Ergebnisse der Messung des Unterarmblutflusses mittels venöser Verschlußplethysmographie auf den Zustand der Koronarien übertragbar. Der letztendliche Beweis der positiven Korrelation zwischen dem Grad der Einschränkung des durch die venöse Unterarmverschlußplethysmographie gemessenen Unterarmflusses und dem Ausprägungsgrad der Koronararteriensklerose, wie er für die Ultraschalldiagnostik einer Gefäßregulationsstörung der Arteria brachialis erbracht wurde, steht aber noch aus.

Schlüsselwörter

Venöse Unterarmverschlußplethysmographie Unterarmzirkulation Koronare Durchblutungsstörung 

Analysis of forearm blood flow — A surrogate for the diagnosis of coronary atherosclerosis?

Summary

The vascular endothelium plays a central role in the regulation of the arterial tone and in the control of the local hemostasis. It is also involved in the regulation of proliferation processes of the vascular wall. The presence of risk factors for coronary artery disease and/or manifest atherosclerotic lesions are associated with an impairment of endothelium-dependent vaso-regulation.

Since the assessment of coronary vascular reactivity requires an invasive approach, it would be desirable to non- or semiinvasively evaluate blood flow regulation and its impairment by atherosclerotic processes. Indeed, endothelial dysfunction of the coronary arteries parallels endothelium-related impairment of vasoreactivity of the brachial artery. Analysis of flow-dependent dilatation of the brachial artery by means of ultrasound represents a non-invasive diagnostic tool to assess endothelium-mediated vasomotion.

By means of venous strain gauge forearm occlusion plethys-mography, it is possible to measure the blood flow in a semi-invasive way. The endothelium-mediated forearm blood flow response is obtained by the infusion of acetylcholine into the brachial artery, whereas infusion of sodium-nitroprusside provides information about the endothelium-independent vasodilator capacity of the forearm resistance vasculature.

Assuming that the atherosclerotic process is a generalized disease, the assessment of the forearm blood flow by venous strain gauge occlusion plethysmography may provide some information applicable to the coronary circulation. However, the proof of a positive correlation between the degree of the impaired forearm blood flow responses measured by occlusion plethysmography and the extent of coronary atherosclerosis and its disturbed vasoregulation remains to be established.

Key words

Strain gauge forearm plethysmography Forearm blood flow Endothelial dysfunction Coronary artery disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Anderson TJ, Uehata A, Gerhard MD. Close relation of endothelial function in the human coronary and peripheral circulation. J Am Coll Cardiol 1995;26:1235–41.PubMedCrossRefGoogle Scholar
  2. 2.
    Barcroft H, Bonnar WMcK, Edholm OG, Effron S. On sympathetic vasoconstrictor tone in human skeletal muscle. J Physiol (Lond) 1943;102:21–31.Google Scholar
  3. 3.
    Benjamin N, Calver A, Collier J, Robinson B, Vallance P, Webb D. Measuring forearm blood flow and interpreting the response to drugs and mediators. Hypertension 1995;25:918–23.PubMedGoogle Scholar
  4. 4.
    Calver AC, Collier JG, Moncada S, Vallance P. Effect of intraarterial NG-Monomethyl-L-arginine in patients with hypertension: the nitric oxide dilator system appears impaired. J Hypertens 1992;10:1025–31.PubMedCrossRefGoogle Scholar
  5. 5.
    Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk for atherosclerosis. Lancet 1992;340:1111–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Celermajer DS, Sorensen KE, Georgakopoulos D, et al. Cigarette smoking is associated with dose related and potentially reversible impairment of endothelium-dependent dilatation in healthy young adults. Circulation 1993;88:2149–55.PubMedGoogle Scholar
  7. 7.
    Chowienczyk PJ, Watts GF, Cockcroft JR, Ritter JM. Impaired endothelium-dependent vasodilatation of forearm resistance vessels in hypercholesterolaemia. Lancet 1992;340:1430–2.PubMedCrossRefGoogle Scholar
  8. 8.
    Collier JG, Robinson BF. Comparison of effects of locally infused angiotensin I and II on hand veins and forearm arteries in man: evidence for converting enzyme in limb vessels. Clin Sci Mol Med 1974;47:189–92.PubMedGoogle Scholar
  9. 9.
    Cooper KE, Edholm OG, Mottram RF. The blood flow in skin and muscle of the human forearm. J Physiol (Lond) 1955;128: 258–67.Google Scholar
  10. 10.
    Creager MA, Gallagher SJ, Girerd XJ, Coleman AM, Dzau VJ, Cooke JP. L-arginine improves endothelium-dependent vasodilatation in hypercholesterolemic humans. J Clin Invest 1992;90: 1248–53.PubMedCrossRefGoogle Scholar
  11. 11.
    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxion of arterial smooth muscle by acetylcholine. Nature 1980;288:373–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Greenfield ADM, Patterson GC. Reactions of the blood vessels of the human forearm to increases in transmural pressure. J Physiol (Lond) 1954;125:508–24.Google Scholar
  13. 13.
    Hashimoto M, Akishita M, Eto M. Modulation of endothelium-dependent flow-mediated dilatation of the brachial artery by sex and menstrual cycle. Circulation 1995;92:3431–5.PubMedGoogle Scholar
  14. 14.
    Heitzer T, Just H, Münzel T. Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 1996;94:6–9.PubMedGoogle Scholar
  15. 15.
    Heitzer T, Ylä-Hertuala S, Luoma J, et al. Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia. Circulation 1996;93:1346–53.PubMedGoogle Scholar
  16. 16.
    Hirono O, Kubota I, Shiga R, Abe S, Terashita K, Tomoike H. Impaired hyperemic response of forearm vessels in patients with coronary artery disease. A non-invasive evaluation. Jpn Heart J 1996;37:837–46.PubMedGoogle Scholar
  17. 17.
    Igarashi K, Horimoto M, Takenaka T, Inoue H, Myata S. Acute cholesterol lowering with LDL-apheresis improves endothelial function of the epicardial coronary artery in patients with hypercholesterolemia. J Am Coll Cardiol 1996;27:19A.CrossRefGoogle Scholar
  18. 18.
    Laurent S, Lacolley P, Brunel P, Laloux B, Pannier B, Safar M Flow-dependent vasodilatation of brachial artery in essential hypertension. Am J Physiol 1990;258:H1004–111.PubMedGoogle Scholar
  19. 19.
    Lieberman EH, Uehata A, Polak J, et al. Flow-mediated vasodilatation is impaired in the brachial artery of patients with coronary artery disease or with diabetes mellitus. Clin Res 1993;41:217. abstract.Google Scholar
  20. 20.
    Lieberman EH, Gerhard MD, Uchata A. Flow-induced vasodilatation of the human brachial artery is impaired in patients < 40 years of age with coronary artery disease. Am J Cardiol 1996;78: 1210–4.PubMedCrossRefGoogle Scholar
  21. 21.
    Meredith IT, Yeung AC, Weidinger FF, et al. Role of impaired endothelium-dependent vasodilatation in ischemic manifestations of coronary artery disease. Circulation 1993;87:V-56–66.Google Scholar
  22. 22.
    Neunteufl Th, Katzenschlager R, Hassan A, et al. Systemic endothelial dysfunction is related to the extend and severity of coronary artery disease. Atherosclerosis 1997;129:111–8.PubMedCrossRefGoogle Scholar
  23. 23.
    O’Driscoll G, Green D, Rankin J, Stanton K, Taylor R. Improvement in endothehelial function by angiotensin converting enzyme inhibition in insulin-dependent diabetes mellitus. J Clin Invest 1997;100:678–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Panza JA, Quyyumi AA, Brush JE Jr, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 1990;323:22–7.PubMedGoogle Scholar
  25. 25.
    Panza JA, Epstein SE, Quyyumi AA. Circadian variation in vascular tone and ist relation to alpha sympathetic vasoconstriction. N Engl J Med 1991;325:986–90.PubMedGoogle Scholar
  26. 26.
    Panza JA, Garcia CE, Kilcoyne CM, Quyyumi AA, Cannon III RO. Impaired endothelium-dependent vasodilatation in patients with essential hypertension. Evidence that nitric oxide abnormality is not localized to a single transduction pathway. Circulation 1995;91:1732–8.PubMedGoogle Scholar
  27. 27.
    Plotnick GD, Coretti MC, Vogel RA. Transient impairment of endothelium-dependent brachial artery vasoactivity following a fatty meal. J Am Coll Cardiol 1996;27:287A.CrossRefGoogle Scholar
  28. 28.
    Robinson BF. Altered calcium handling as a cause of primary hypertension. J Hypertens 1984;2:453–60.PubMedCrossRefGoogle Scholar
  29. 29.
    Rubanyi GM, Romero C, Vanhouette PM. Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986;250: 1115–9.Google Scholar
  30. 30.
    Tardy Y, Meister JJ, Perret F, Brunner HR, Arditi M. Non-invasive estimate of the mechanical properties of peripheral arteries from ultrasonic and photoplethysmographic measurements. Clin Phys Physiol Meas 1991;12:39–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Timimi FK, Ting HH, Boles KS, Roddy MA, Ganz P, Creager MA. Acute vitamin C administration improves endothelium-dependent vasodilatation in insulin-dependent diabetic patients. J Am Coll Cardiol 1996;27:177A.CrossRefGoogle Scholar
  32. 32.
    Vallance P, Collier J, Moncada S. Effect of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989;2: 997–1000.PubMedCrossRefGoogle Scholar
  33. 33.
    Vogel RA, Corretti MC, Plotnick GD Changes in flow-mediated brachial artery vasoreactivity with lowering of desirable cholesterol levels in healthy middle-aged men. Am J Cardiol 1996;77: 37–40.PubMedCrossRefGoogle Scholar
  34. 34.
    Whelan RF. Control of the peripheral circulation in man. Springfield: Ch. C Thomas, 1967.Google Scholar
  35. 35.
    Zeiher AM, Drexler H, Wollschläger H, Just H. Modulation of coronary vasomotor tone in humans: progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991;83:391–401.PubMedGoogle Scholar
  36. 36.
    Zeiher AM, Drexler H, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia and hypertension. J Clin Invest 1993;92:652–62.PubMedCrossRefGoogle Scholar
  37. 37.
    Zeiher AM, Schächinger V, Hohnloser SH, Saurbier B, Just H. Coronary atherosclerotic wall thickening and vascular reactivity in humans. Elevated high-density lipoprotein levels ameliorate abnormal vasoconstriction in early atherosclerosis. Circulation 1994;89:2525–32.PubMedGoogle Scholar
  38. 38.
    Zeiher AM, Schächinger V, Minners J. Long-term cigarette smoking impairs endothelium-dependent coronary arterial vasodilator function. Circulation 1995;92:1094–100.PubMedGoogle Scholar
  39. 39.
    Zeiher AM. Endothelial vasodilator dysfunction: pathogenetic link to myocardial ischaemia or epiphenomenon? Lancet 1996;348: S10-S12.PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 1998

Authors and Affiliations

  • Gunter Rosenberger
    • 1
  • Stephan Fichtlscherer
    • 1
  1. 1.Medizinische Klinik IV, Abteilung für KardiologieKlinikum der UniversitätFrankfurt/Main

Personalised recommendations