Advertisement

Herz

, Volume 23, Issue 2, pp 69–77 | Cite as

Pathomorphologie der koronaren Atherosklerose

  • Christian Ihling
Koronare Atherosklerose — Funktionelle Konsequenzen

Zusammenfassung

Das „American Heart Association Committee on Vascular Lesions” empfiehlt die im folgenden vorgestellte morphologische Klassifikation atherosklerotischer Plaques, basierend auf Vorschlägen von H. C. Stary. Diese Stadieneinteilung wurde an einer großen Serie von Autopsien erarbeitet, die eine Beobachtung der „natürlichen” Entwicklung von Plaques an, bestimmten Prädilektionsstellen der Atherosklerose im Bereich der Koronarien von ihren symptomlosen Frühstadien bis zu klinisch symptomatischen Läsionen ermöglichte. Der atherosklerotische Prozeß wird in fünf Phasen eingeteilt, die möglicherweise dem natürlichen zeitlichen Verlauf der Erkrankung entsprechen. Jede Phase ist durch Plaques mit charakteristischer Morphologie gekennzeichnet. Die Klassifikation bietet somit ein Spektrum typischer Morphologien, mit denen klinische Untersuchungsergebnisse korreliert werden können.

Aus der Plaquemorphologie wird deutlich, daß es sich bei der Atherosklerose um eine chronisch entzündliche Erkrankung der Gefäßintima handelt, die vergleichbar ist mit anderen chronisch entzündlichen Prozessen und Wundheilungsvorgängen. Klinische Komplikationen entstehen durch entzündungsbedingte Endothelerosionen und Plaquerupturen mit konsekutiver Thrombose. Rupturierte und rupturgefährdete Plaques sind gekennzeichnet durch: ein „lipid core”, das mehr als 40% des Plaquevolumens einnimmt, eine hohe Makrophagendichte, eine geringe Dichte an glatten Muskelzellen, eine dünne Deckplatte, einen geringen Gehalt an Kollagenfasern und eine hohe Expression von „tissue factor”

Die chronisch entzündlichen Prozesse innerhalb des Atheroms sind offenbar jedoch nicht nur für Plaqueinstabilität verantwortlich, sondern auch für die lokale koronare Hyperreaktivität im Bereich symptomatischer Gefäßstenosen. In diesem Zusammenhang spielt Endothelin 1 (ET-1), ein stark vasokonstriktorisch wirkendes Peptid, offenbar eine besondere Rolle. Wie unsere Untersuchungen zeigen, wird ET-1 lokal in der Wand atherosklerotischer Gefäße gebildet und kommt vor allem in Plaqueregionen mit starker chronischer Entzündung vor. Durch die semiquantitative Analyse der ET-1 IR wurde deutlich, daß in Plaques von Patienten mit akuten Koronarsyndromen signifikant mehr ET-1 vorhanden ist als in Plaques von Patienten mit stabiler Angina pectoris. Der erhöhte ET-1-Gehalt von instabilen atheroskerotischen Plaques ist von Vorteil, da er hilft, die Gefäßwand nach einer Plaqueruptur zu stabilisieren, indem ET-1 die Wundheilung nach Plaqueruptur unterstützt. Er ist nachteilig, da er offenbar zur Auslösung von Koronarspasmen beiträgt und das Fortschreiten der Atherosklerose begünstigt. Die Einführung von ETA-ETA/ETB- und ETB-Rezeptor-Antagonisten bietet eine direkte und neue Therapiemöglichkeit, welche die Rolle von ET-1 in der Pathophysiologie der akuten Koronarsyndrome weiter definieren wird. Bislang fehlen allerdings noch klinische Daten zur Wirkung dieser Substanzen bei akuten Koronarsyndromen oder vasospastischer Angina.

Schlüsselwörter

Atherosklerose Morphologie Chronische Erkrankung Komplikationen Endothelin 1 Akute Koronarsyndrome 

Pathomorphologic classification of coronary atherosclerosis

Summary

The “American Heart Association Committee on Vascular Lesions” suggests the following morphologic classification of atherosclerotic plaques: the classification is based on large autopsy studies facilitating the assessment of the natural course of atherosclerotic lesions at precisely defined progression prone areas of the coronary tree from their clinically silent beginning to the stage where they produce symptoms. Lesion evolution is divided in 5 phases reflecting the possible time course of plaque development. Each phase is characterized by plaques with a distinctive morphology. The classification offers a framework of typical morphologies which the results of clinical investigations may be related to.

Looking at the plaque composition, it is readily conceivable that atherosclerosis shares many characteristics with the general pathology of chronic inflammation and wound healing. Clinical symptoms e. g. acute coronary syndroms, arise from inflammation-mediated endothelial erosion and/or plaque rupture with ensuing coronary thrombosis. Advanced or complicated plaques are composed of different kinds of constituents in varying propotions. However, plaques at risk display a large lipid core occupying more than 40% of the plaque’s volume, increased numbers of macrophages, reduced numbers of smooth muscle cells, an increased expression of tissue factor, and a thin plaque cap.

Functionally, active plaques are characterized by a locally enhanced vasoreactivity with evidence coming from our own recent investigations that localised chronic inflammatory processes within the atherosclerotic plaque are responsible not only for the plaque rupture itself, but also for the hyperreactivity of these vessels to vasoconstrictor stimuli. In this context endothelin 1 (ET-1), a very potent vasoconstrictor peptide, may play an important role. ET-1 was originally reported to be produced by endothelial cells and to act locally in a paracrine fashion to regulate vascular tone. However, further studies have clarified that ET-1 is not only produced by endothelial cells but also by human inflammatory cells suggesting a role for ET-1 in inflammatory processes. Additionally, ET-1 displays a potent mitogenic activity. We examined immunohistochemically the presence of ET-1 in coronary plaque tissue obtained by directional coronary atherectomy. ET-1 immunoreactivity preferentially localized in plaque components indicative of a chronic inflammatory process. In addition, semiquantitative analysis of ET-1-like immunoreactivity revealed significantly higher staining grades in active coronary lesions compared with nonactive lesions. The increased ET-1 content in active coronary lesions may be beneficial to the stabilization of the vessel wall after plaque rupture and disadvantageous because it may lead to vasospasm and to the progression of atherosclerosis.

Key Words

Atherosclerosis Morphology Chronic inflammation Complications Endothelin 1 Acute coronary syndroms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Alexander RW. Inflammation and coronary artery disease (editorial). N Engl J Med 1994;331:468–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Amento EP, Ehsani N, Palmer H, Libby P. Cytokines positively and negatively regulate intestitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb 1991;11:1223–30.PubMedGoogle Scholar
  3. 3.
    Annex BH, Denning SM, Channon KM, et al. Differential expression of tissue factor protein in directional atherectomy specimens, from patients with stable and unstable coronary syndromes. Circulation 1995;91:619–22.PubMedGoogle Scholar
  4. 4.
    Appleton I, Tomlinson A, Chander CL, Willoughby DA. Effect of endothelin-1 on croton oil-induced granulation tissue in the rat. Lab Invest 1992;67:703–10.PubMedGoogle Scholar
  5. 5.
    Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of cDNA encoding an endothelin receptor. Nature 1990;348:730–2.PubMedCrossRefGoogle Scholar
  6. 6.
    Atkinson JB, Harlan CW, Harlan GC, Virmani R. The association of mast cells and atherosclerosis: a morphometric study of early atherosclerotic lesions in young people. Hum Pathol 1993;25:154–9.CrossRefGoogle Scholar
  7. 7.
    Bdolah A, Wollberg Z, Amba J, Kloog J, Sokolovsky M, Kochva E. Disturbances in the cardiovascular system caused by endothelin and sarafotoxin. Biochem Pharmacol 1989;38:3145–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Boulanger C, Lüscher T. Release of endothelin from the porcine aorta. J Clin Invest 1990;85:587–90.PubMedCrossRefGoogle Scholar
  9. 9.
    Brown BG, Fry DL. The fate an fibrogenic potential of subintimal implants of crystalline lipid in the canine aorta. Quantitative histological and autoradiographic studies. Circ Res 1978;43:261–73.PubMedGoogle Scholar
  10. 10.
    Brown KD, Littlewood CJ. Endothelin stimulates DNA synthesis in Swiss 3T3 cells Synergy with polypeptide growth factors. Biochem J 1989;263:977–80.PubMedGoogle Scholar
  11. 11.
    Brown MR, Vaughan J, Jimenez LL, Vale W, Baird A. Transforming growth factor-b: role in mediating serum-induced endothelin production by vascular endothelial cells. Endocrinology 1991;129:2355–60.PubMedCrossRefGoogle Scholar
  12. 12.
    Clozel M, Breu V, Burri K, et al. Pathophysiologic role of endothelin revealed by the first orally active endothelin receptor antagonist. Nature 1993;365:759–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993;69:377–81.PubMedCrossRefGoogle Scholar
  14. 14.
    Denault JB, Claning A, D’Oreleans-Juste P, et al. Processing of proendothelin-1 by human furin convertase FEBS Lett 1995;362:276–80.PubMedCrossRefGoogle Scholar
  15. 15.
    Dohi J, Hahn AWA, Boulanger CM, Bühler FR, Lüscher TF. Endothelin stimulated by angiotensin II augments contractility of spontaneously hypertensive rat resistance arteries. Hypertension 1992;19:131–7.PubMedGoogle Scholar
  16. 16.
    Ehrenreich H, Andreson RW, Fox CH, et al. Endothelins, peptides with potent vasoactive poperties, are produced by human macrophages. J Exp Med 1990;172:1741–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Falk E. Morphological features of unstable atherothrombotic plaques underlying acute coronary syndromes. Am J Cardiol 1989;63:114E-20E.PubMedCrossRefGoogle Scholar
  18. 18.
    Gabbiani G, Hirschel BJ, Ryan GB, Statkov PR, Majno G. Granulation tissue as a contractile organ. A study of structure and function. J Exp Med 1972;135:719–34.PubMedCrossRefGoogle Scholar
  19. 19.
    Galis Z, Muszynski M, Sukhova G, et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 1994;75:181–9.PubMedGoogle Scholar
  20. 20.
    Galis Z, Sukhova G, Kranzhöfer R, Clark S, Libby P. Makrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci USA 1995;92:402–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Galis Z, Sukhova G, Lark M, Libby P. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 1994;94:2493–503.PubMedCrossRefGoogle Scholar
  22. 22.
    Hahn AWA, Resink TJ, Kern F, Bühler FR. Effects of endothelin-1 on vascular smooth muscle cell phenotypic differentiation. J Cardiovasc Pharmacol 1992;20:Suppl 12:533–6.Google Scholar
  23. 23.
    Hansson GK, Holm J, Jonasson L. Detection of activated T-lymphocytes in the human atherosclerotic plaque. Am J Pathol 1989;135:169–75.PubMedGoogle Scholar
  24. 24.
    Hansson GK, Jonasson L, Holm J, Clowes MK, Clowes A. Gamma interferon regulates vascular smooth muscle cell proliferation and Ia expression in vivo and in vitro. Circ Res 1988;63:712–9.PubMedGoogle Scholar
  25. 25.
    Haynes WG, Webb DJ. Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 1994;344:852–4.PubMedCrossRefGoogle Scholar
  26. 26.
    Henney AM, Wakeley PR, Davies MJ, et al. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci USA 1991;88:8154–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Hirata Y, Takagi Y, Fukuda Y, Marumo F. Endothelin is a potent mitogen for rat vascular smooth muscle cells. Atherosclerosis 1989;78:225–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Hiroe M, Hirata Y, Marumo F, et al. Immunohistochemical localization of endothelin in human vascular endothelial cells. Peptides 1989;10:1281–2.PubMedCrossRefGoogle Scholar
  29. 29.
    Hoff HF, Gaubatz JW. Isolation, purification and characterization of lipoproteins containing, apo B from the human aorta. Atherosclerosis 1982;42:273–97.PubMedCrossRefGoogle Scholar
  30. 30.
    Ihling C, Göbel H, Lippoldt A, et al. Endothelin-1-like-immunoreactivity in human atherosclerotic coronary tissue: A detailed analysis of the cellular distribution of endothelin-1. J Pathol 1996;179:303–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Ihling C, Göbel H, Schaefer HE, Zeiher AM. Endothelin-1 and chronic inflammation in coronary atherosclerosis associated with acute coronary syndromes. Cell Vision 1995;2:283–8.Google Scholar
  32. 32.
    Inoue A, Yanagisawa M, Kimura S, et al. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc Natl Acad Sci USA 1989;86:2863–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Kanse SM, Takahashi K, Warren JB, et al. Production of endothelin by vascular smooth muscle cells. J Cardiovasc Pharmacol 1991;17:Suppl 7:S113–6.CrossRefGoogle Scholar
  34. 34.
    Kochva E, Bdolah A, Wollberg Z. Sarafotoxins and endothelins: evolution, structure and function. Toxicon 1993;31:541–68.PubMedCrossRefGoogle Scholar
  35. 35.
    Komuro I, Kurihara I, Sugiyama T, Takaku F, Yazaki Y. Endothelin stimulates c-fos and c-myc expression and proliferation of vascular smooth muscle cells. FEBS Lett 1988;238:249–52.PubMedCrossRefGoogle Scholar
  36. 36.
    Kovanen PT, Kaartinen M, Paavonen T. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 1995;92:1084–8.PubMedGoogle Scholar
  37. 37.
    Lerman A, Edwards BS, Halet, JW, Heublein DM, Sandberg SM, Burnett JC Jr. Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. N Engl J Med 1991;325:997–1001.PubMedGoogle Scholar
  38. 38.
    Lerman A, Webster MWI, Chesebro JH, et al. Circulating and tissue endothelin immunoreactivity in hypercholesterolemic pigs. Circulation 1993;88:2923–8.PubMedGoogle Scholar
  39. 39.
    Marsden PA, Brenner BM. Transcriptional regulation of the endothelin-1 gene by TNF-alpha. Am J Physiol 1992;262:C854–61.PubMedGoogle Scholar
  40. 40.
    Martin-Nizard F, Houssaini HS, Lestavel-Delattre S, Duriez P, Fruchard J-C. Modified low density lipoproteins activate human macrophages to secrete immunoreactive endothelin. FEBS Lett 1991;293:127–30.PubMedCrossRefGoogle Scholar
  41. 41.
    Masaki T, Kimura S, Yanagisawa M, Goto K. Molecular and cellular mechanism of endothelin regulation. Implications for vascular function. Circulation 1991;84:1457–68.PubMedGoogle Scholar
  42. 42.
    Miyauchi T, Tomobe Y, Shiba R, et al. Involvement of endothelin in the regulation of human vascular tonus: potent vasoconstrictor effect and existence in endothelial cells. Circulation 1990;81:1874–1880.PubMedGoogle Scholar
  43. 43.
    Moreno PR, Falk E, Palacios IF, Newell JB, Fuster V, Fallon JT. Macrophage infiltration in acute coronary syndromes: implications for plaque rupture. Circulation 1994;90:775–8.PubMedGoogle Scholar
  44. 44.
    Munro JM, Cotran RS. The pathogenesis of atherosclerosis: atherogenesis and inflammation. Lab Invest 1988;58:249–61.PubMedGoogle Scholar
  45. 45.
    Murch SH, Braegger CP, Sessa WC, Mac Donald TT. High endothelin-1 immunoreactivity in Crohn’s disease and ulcerative colitis. Lancet 1992;339:381–5.PubMedCrossRefGoogle Scholar
  46. 46.
    Ogawa Y, Nakao K, Arai H, Suga S, et al. Molecular cloning of a non-isopeptide-selective human endothelin receptor. Biochem Biophys Res Commun 1991;178:245–8.CrossRefGoogle Scholar
  47. 47.
    Ohlstein EH, Storer JA, Debouck C, Feuerstein G. Platelets stimulate expression of endothelin mRNA and endothelin biosynthesis in cultured endothelial cells. Circ Res 1991;69:832–41.PubMedGoogle Scholar
  48. 48.
    Raymond TL, Reynolds SA. Lipoproteins of the extracellular space: alterations in low density lipoproteins of interstitial inflammatory fluid. J Lipid Res 1983;24:113–9.PubMedGoogle Scholar
  49. 49.
    Rekther M, Zhang K, Narayanan A, Phan S, Schork M, Gordon D. Type I collagen gene expression in human athersclerosis: localization to specific plaque regions. Am J Pathol 1993;143:1634–48.Google Scholar
  50. 50.
    Richardson P, Davies M, Born G. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 1989;2:941–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Ross R. The pathologesis of atherosclerosis: a perspective for the 1990s. Nature 1993;362:801–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Sakurai T, Yanagisawa M, Takuwa J, et al. Cloning of cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 1990;348:732–5.PubMedCrossRefGoogle Scholar
  53. 53.
    Sessa WC, Kaw S, Hecker M, Vane JR. The biosynthesis of endothelin-1 by human polymorphonuclear leukocytes. Biochem Biophys Res Commun 1991;174:613–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Sessa WC, Kaw S, Zembowicz A, Anggard E, Hecker M, Vane JR. Human polymorphonuclear leukocytes generate and degrade endothelin-1 by two distinct neutral proteases. J Cardiovasc Pharmacol 1991;17:Suppl 7:34–8.Google Scholar
  55. 55.
    Small DM, Bond MG, Waugh D, Prack M, Sawyer JK. Physiochemical and histological changes in arterial wall of nonhuman primates during progression and regression of atherosclerosis. J Clin Invest 1984;73:1590–605.PubMedCrossRefGoogle Scholar
  56. 56.
    Sprigall DR, Howarth PH, Counihan H, Djukanovic R, Holgate ST, Polak JM. Endothelin immunoreactivity of airway epithelium in asthmatic patients. Lancet 1991;337:697–701.CrossRefGoogle Scholar
  57. 57.
    Stary HC, Chandler AB, Glagov S, et al. A definition of initial, fatty streak, and intermediate lesions of atherosclerosis. A report from the committee on vascular lesions of the council on atherosclerosis, American Heart Association. Circulation 1994;89:2462–78.PubMedGoogle Scholar
  58. 58.
    Stary HC. Composition and classification of human atherosclerotic lesions. Virchows Arch [Pathol Anat] 1992;421:277–90.CrossRefGoogle Scholar
  59. 59.
    Tabuchi J, Nakamura M, Rakugi H, Nagano M, Ogihara T. Endothelin enhances adrenergic vasoconstriction in perfused rat mesenteric arteries. Biochem Biophys Res Commun 1989;159: 1304–8.PubMedCrossRefGoogle Scholar
  60. 60.
    van der Wal AC, Becker AE, van der Loos CM, Das PK. The site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44.PubMedGoogle Scholar
  61. 61.
    Warner SJC, Friedman GB, Libby P. Immune interferon inhibits proliferation and induces 2′–5′-oligoadenylate synthetase gene expression in human vascular smooth muscle cells. J Clin Invest 1989;83:1174–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Warner SJC, Friedman GB, Libby P. Regulation of major histocompatibility gene expression in cultured human vascular smooth muscle cells. Arteriosclerosis 1989;9:279–88.PubMedGoogle Scholar
  63. 63.
    Wenzel RR, Noll G, Lüscher TF. Endothelin receptor antagonists inhibit endothelin in human skin microcirculation. Hypertension 1994;23:581–6.PubMedGoogle Scholar
  64. 64.
    World Health Organization. The classification of atherosclerotic lesions. Report of a study group. WHO Tech Rep Ser 1985;143:1–20.Google Scholar
  65. 65.
    Yanagisawa M, Kurihara H, Kimura S, et al. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 1988;332:411–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Yanagisawa M, Masaki T. Endothelin, a novel endothelium-derived peptide. Biochem Pharmacol 1989;38:1877–83.PubMedCrossRefGoogle Scholar
  67. 67.
    Yang Z, Richard D, von Segesser, L, et al. Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries: a new mechanism of vasospasm? Circulation 1990;82:188–95.PubMedGoogle Scholar
  68. 68.
    Yoshizumi M, Kurihara H, Morita T, et al. Interleukin 1 increases the production of endothelin-1 by cultured endothelial cells. Biochem Biophys Res Commun 1990;166:324–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Zeiher AM, Goebel H, Schächinger V, Ihling C. Tissue endothelin-1 immunoreactivity in the active coronary atherosclerotic plaque: a clue to the mechanism of increased vasoreactivity of the culprit lesion in unstabe angina. Circulation 1995;91:941–7.PubMedGoogle Scholar
  70. 70.
    Zeiher AM, Ihling C, Pistorius K, Schächinger V, Schaefer HE. Increased tissue endothelin immunoreactivity in atherosclerotic lesions associated with acute coronary syndromes. Lancet 1994;344:1405–6.PubMedCrossRefGoogle Scholar

Copyright information

© Urban & Vogel 1998

Authors and Affiliations

  1. 1.Institut für Pathologie der UniversitätFreiburg

Personalised recommendations