Skip to main content
Log in

The physiology and pathophysiology of the nitric oxide/superoxide system

Physiologie und Pathophysiologie des Stickstoffmonoxid-Superoxid-Systems

  • Coronary Atherosclerosis
  • Published:
Herz Aims and scope Submit manuscript

Summary

The endothelium modulates vascular tone by producing vasodilator vasoconstrictor substances. Of these, the most well characterized and potentially important are NO and.O2 . These small molecules exhibit opposing effects on vascular tone, and chemically react with each other in a fashion which negates their individual effects and leads to the production of potentially toxic substances. These dynamic interactions may likely have important implications, altering not only tissue perfusion but also contributing to the process of atherosclerosis..NO is produced in endothelial cells by an enzyme termed nitric oxide synthase. The endothelial.NO-synthase is activated when the intracellular level of calcium is increased. This occurs in response to neurohormonal stimuli and in response to shear stress. Acetylcholine and substance P are examples of neurohumoral substances that are able to stimulate the release of nitric oxide and to assess endothelial regulation of vasomotor tone. Importantly, the vasodilator potency of nitric oxide released by the endothelium is abnormal in a variety of diseased states such as hypercholesterolemia, atherosclerosis and diabetes mellitus. This may be secondary to decreased synthesis of nitric oxide or increased degradation of nitric oxide due to superoxide anions. More recent experimental observations demonstrate increased production of superoxide in atherosclerosis, diabetes mellitus and high renin hypertension suggesting that endothelial dysfunction in these states is rather secondary to increased.NO metabolism rather than due to decreased synthesis of.NO. Superoxide rapidly reacts with nitric oxide to form the highly reactive intermediate peroxynitrite (ONOO). Peroxynitrite can be protonated to form peroxynitrous acid which in turn can yield the hydroxyl radical (OH.). These reactive species can oxidize lipids, damage cell membranes, and oxidize thiol groups..NO given locally, exerts potent antiatherosclerotic effects such as inhibition of platelet aggregation, inhibition of adhesion of leukocytes and the expression of leukocyte adhesion molecules. It is important to note, however, that in-vivo treatment with.NO (via organic nitrates) increases rather than decreases oxidant load within endothelial cells. It remains therefore questionable whether systemic treatment with.NO may have antiatherosclerotic properties or whether.NO may initiate or even accelerate the atherosclerotic process.

Zusammenfassung

Das Endothel reguliert durch die Produktion vasodilatierender und vaskonstriktorisch wirkender Substanzen in entscheidendem Maße den Gefäßtonus. Zu den am besten charakterisierten Molekülen gehören Stickstoffmonoxid (.NO) und das Superoxidanion (.O2 )..NO wird im Endothel durch das Enzym.NO-Synthase aus der Aminosäure L-Arginin gebildet. Die wichtigsten physiologischen Stimuli zur.NO-Bildung sind die pulsatile Dehnung der Gefäßwand sowie die Scherkräfte, die auf das Endothel einwirken. Pharmakologisch kann die Freisetzung von.NO in vitro und in vivo durch die Gabe von Acetylcholin induziert werden, ein Verfahren, das mit Erfolg zur Endothelfunktionsdiagnostik in peripheren Arterien und Koronararterien eingesetzt wird. Die vasodilatierende Wirkung von.NO ist im Rahmen von verschiedenen Erkrankungen wie arterielle Hypertonie, Hypercholesterinämie und Diabetes mellitus deutlich abgeschwächt. Dies kann jedoch nicht auf eine verminderte.NO-Bildung zurückgeführt werden, da die Aktivität bzw. die Expression des Enzyms endotheliale.NO-Synthase bei diesen Erkrankungen eher kompensatorisch gesteigert als abgeschwächt ist. Neuere tierexperimentelle Untersuchungen konnten nachweisen, daß bei diesen Krankheitsbildern die endotheliale Superoxidproduktion ebenfalls angekurbelt ist. Somit kommt einem erhöhten.NO-Metabolismus durch.O2 reagiert rasch mit.NO unter der Bildung des instabilen Metaboliten Peroxynitrit (ONOO). Durch eine Protonierungsreaktion kann letztendlich das Hydroxylradikal entstehen, das wiederum Lipide und Thiolgruppen oxidieren und Membranen schädigen kann. In vitro konnten für.NO vielschichtige antiarteriosklerotische Eigenschaften. wie zum Beispiel Inhibition der Expression von Leukozytenadhäsionsmolekülen und Inhibition der Plättchenaggregation, nachgewiesen werden. In-vivo-Behandlung mit.NO (zum Beispiel in Form von Nitroglycerin) führt in Tiermodellen nachweislich eher zu einer Steigerung als zu einer Reduktion der endothelialen Superoxidbildung. Somit bleibt abzuwarten, ob durch eine Therapie mit.NO der bei Patienten mit manifester koronarer Herzkrankheit (und somit erhöhtem oxidativen Streß in der Gefäßwand) die Arteriosklerose positiv beeinflußt wird oder ob durch die Invivo-.NO-Gabe der arteriosklerotische Prozeß nicht eher beschleunigt wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, T. J., I. Meredith, A. C. Yeung, B. Frei, A. P. Selwyn, P. Ganz: The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion [see comments]. New Engl. J. Med. 332 (1995).

  2. Andrea, J. E., M. P. Walsh: Protein kinase C of smooth muscle. Hypertension 20 (1992), 585–595.

    PubMed  CAS  Google Scholar 

  3. Bauersachs, J., M. Hecker, R. Busse: Display of the characteristics of endothelium-derived hyperpolarizing factor by a cytochrome P450- derived arachidonic acid metabolite in the coronary microcirculation. Brit. J. Pharmacol. 113 (1994), 1548–1553.

    CAS  Google Scholar 

  4. Beckman, J. S., Z. Y. Ye, P. G. Anderson, J. Chen, M. A. Accavetti, M. M. Tarpey, C. R. White: Extensive nitration of protein tyrosines in human atheroselerosis detected by immunohistochemistry. Hoppe-Seylers Z. physiol. Chem. 375 (1994), 81–88.

    Google Scholar 

  5. Bevilacqua, M. P.: Endothelial-leucocyte adhesion molecules. Ann. Rev. Immunol. 11 (1993), 767–804.

    Article  CAS  Google Scholar 

  6. Bolotina, V. M., S. Najibi, J. J. Palacino, P. J. Pagano, R. A. Cohen: Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature (Lond.) 368 (1994), 850–853.

    Article  CAS  Google Scholar 

  7. Cayette, A. J., J. J. Palacino, K. Horten, R. A. Cohen: Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemicrabbits. Arterloscler. Thrombos. 14 (1994), 753–759.

    Google Scholar 

  8. Celermajer, D. S., K. E. Sorensen, V. M. Gooch, D. J. Spiegelhalter, O. I. Miller, I. D. Sullivan, J. K. Lloyd J. E. Deanfleld: Noninvasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340 (1992), 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  9. Cox, D. A., J. A. Vita, C. B. Treasusre, R. D. Fish, R. W. Alexander, P. Ganz, A. P. Selwyn: Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 80 (1989), 458–465.

    PubMed  CAS  Google Scholar 

  10. Creager, M. A, J. P. Cooke, M. E. Mendelsohn, S. J. Gallagher, S. M. Coleman, J. Loscalzo, V. J. Dzau: Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J. clin. Invest. 86 (1990), 228–234.

    Article  PubMed  CAS  Google Scholar 

  11. Drexler, H., A. M. Zeiher, H. Wollschlaeger, T. Meinertz, H. Just, T. Bonzel: Flow-dependent coronary artery dilatation in humans. Circulation 80 (1989), 466–474.

    PubMed  CAS  Google Scholar 

  12. Drexler, H., A. M. Zeiher, W. Köster, W. Zeh, H. Wieland: Endothelial dysfunction in Ihe coronary circulation in hypercholesterolemia: effect of high HDL-cholesterol. Circulation 86, Suppl. 1 (1992), 467.

    Google Scholar 

  13. Egashira, K., H. Y. Kai et al.: Reduction in serum cholesterol with provastatin improves endothelium-dependent coronary vasomotion in patients with hypercholesterolemia. Circulation 89 (1994), 2519–2524.

    PubMed  CAS  Google Scholar 

  14. Feelisch, M., M. Kelm: Biotransformation of organic nitrates to nitric oxide by vascular smooth muscle cells and endothelial cells. Biochem. biophys. Res. Commun. 190 (1991), 286–293.

    Article  Google Scholar 

  15. Feletou, M., P. M. Vanhoutte: Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Brit. J. Pharmacol. 93 (1988), 515–524.

    CAS  Google Scholar 

  16. Frei, B, L. England, B. N. Ames: Ascorbate is an outstanding antioxidant in human blood plasma. Proc. nat. Acad. Sci. (Wash.) 86 (1989), 6377–6381.

    Article  CAS  Google Scholar 

  17. Frei, B., T. M. Forte, B. N. Ames, C. E. Cross: Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem. J. 277 (1991), 133–138.

    PubMed  CAS  Google Scholar 

  18. Freiman, P. C., G. C. Mitchell, D. D. Heistad, M. L. Armstrong, D. G. Harrison: Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circulat. Res. 58 (1986), 783–789.

    PubMed  CAS  Google Scholar 

  19. Furchgott, R. F., J. V. Zawadzki: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (Lond.) 228 (1980), 373–376.

    Article  Google Scholar 

  20. Garg, U. C., A. Hassid: Nitric oxide-generating vasodilators and 8bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J. clin. Invest. 83 (1989), 1774–1777.

    Article  PubMed  CAS  Google Scholar 

  21. Gordon, J. B., P. Ganz, E. G. Nabel, R. D. Fish, J. Zebede, G. H. Mudge, R. W. Alexander, A. P. Selwyn: Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise. J. clin. Invest. 83 (1989), 1946–1952.

    Article  PubMed  CAS  Google Scholar 

  22. Griendling, K. K., C. A. Minieri, J. D. Ollerenshaw, R. W. Alexander: Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circulat. Res. 74 (1994), 1141–1148.

    PubMed  CAS  Google Scholar 

  23. Gruetter, C. A., D. Y. Gruetter, J. E. Lyon, P. J. Kadowitz, L. J. Ignarro: Relationship between cyclic guanosine 3′∶5′-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J. Pharmacol. exp. Ther. 219 (1981), 181–186.

    PubMed  CAS  Google Scholar 

  24. Gryglewski, R. J., R. M. J. Palmer, S. Moncada: Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature (Lond.) 320 (1986), 454–456.

    Article  CAS  Google Scholar 

  25. Gyllenhammar, H.: Lucigenin chemiluminescence in the assessment of neutrophil superoxide, production. J. immunol. Meth. 97 (1987), 209–213.

    Article  CAS  Google Scholar 

  26. Habib, J. B., C. Bossaller, S. Wells, C. Williams, J. D. Morrisett, P. D. Henry: Preservation of endothelium-dependent vascular relaxation in cholesterol-fed rabbit by treatment with the calcium blocker PN 200110. Circulat. Res. 58 (1986), 305–309.

    PubMed  CAS  Google Scholar 

  27. Harrison, D. G., M. L. Armstrong, P. C. Freiman, D. D. Heistad: Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis. J. clin. Invest 80 (1987), 1808–1811.

    Article  PubMed  CAS  Google Scholar 

  28. Harrison, D. G., P. C. Freiman, M. L. Armstrong, M. L. Marcus, D. D. Heistad: Alterations of vascular reactivity in atheroscierosis. Circulat. Res. 61 (1987), 1174–1180.

    Google Scholar 

  29. Harrison, D. G., P. J. Heald: The isolation of poly-alpha-L-glutamic acid from the oviduct of the domestic fowl. Proc. roy. Soc. Lond. B 166 (1966), 341–357.

    Article  CAS  Google Scholar 

  30. Harrison, D. G.: Endothelial regulation of vasomotion: a alterations in atherosclerosis. Canad. J. Cardiol. 9 (1993), 1A-6A.

    Google Scholar 

  31. Heistad, D. D., M. L. Armstrong, M. L. Marcus, D. J. Piegors, A. L. Mark. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circulat. Res. 54 (1984) 711–718.

    PubMed  CAS  Google Scholar 

  32. Heitzer, T., S. Ylä-Herttuala, J. Luoma, S. Münzei, H. Just, M. Olschewski, H. Drexler: Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia: role of oxidized LDL. Circulation 93 (1996), 1346–1353.

    PubMed  CAS  Google Scholar 

  33. Heitzer, T., H. Just, T. Münzel: Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 94 (1996), 6–9.

    PubMed  CAS  Google Scholar 

  34. Henry, P. D., M. Yokoyama: Supersensitivity of atherosclerotic rabbit aorta to ergonovine: mediation by a serotonergic mechanism. J. clin. Invest. 66 (1980), 306–313.

    Article  PubMed  CAS  Google Scholar 

  35. Kifor, I., V. Dzau: Endothelial renin angiotensin pathway: evidence for intracellular synthesis and secretion of angiotensins. Circulat. Res. 60 (1987), 422–428.

    PubMed  CAS  Google Scholar 

  36. Kubes, P., M. Suzuki, D. N. Granger: Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. nat. Acad. Sci. (Wash.) 88 (1991), 4651–4655.

    Article  CAS  Google Scholar 

  37. Lamas, S., P. A. Marsden, G. K. Li, P. Tempst, T. Michel: Endothelial nitric oxide synthase: molecular cioning and characterization of a distinet constitutive enzyme isoform. Proc. nat. Acad. Sci. (Wash.) 89 (1992), 6348–6352

    Article  CAS  Google Scholar 

  38. Lehr, H. A., B. Frei, A. M. Olofsson, T. E. Carew, K. E. Arfors: Protection from oxidized LDL-induced leucocyte adhesion to microvascular and macrovascular endothelium in vivo by vitamin C but not by vitamin E. Circulation 91 (1995), 1525–1532.

    PubMed  CAS  Google Scholar 

  39. Lerman, A., J. C. Burnett Jr. Intact and altered endothelium in regulation of vasomotion. Circulation 86 (1992), 1112–1119.

    Google Scholar 

  40. Lerman, A., M. W. Webter, J. H. Chesebro, W. D. Edwards, C. M. Wei, V. Fuster, J. C. Burnett Jr.: Circulating and tissue endothelin immunoreactivity in hypercholesterolemic pigs. Circulation 88 (1993), 2923–2928.

    PubMed  CAS  Google Scholar 

  41. Leung, W. H., L. C. Pak, C. K. Wong: Beneficial effect of cholesterol-lowering therapy on coronary endothelium-dependent relaxation in hypercholesterolemic patients. Lancet 341 (1993), 1496–1500.

    Article  PubMed  CAS  Google Scholar 

  42. Levesque, M. J., R. M. Nerem: The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107 (1985), 341–347.

    Article  PubMed  CAS  Google Scholar 

  43. Liew, F. Y., F. E. G. Cox: Nonspecific defence mechanism: the role of nitric oxide. Immunoparasitol. Today (1991).

  44. Lin, L., A. Nasjiletti: Role of endothelium derived prostanoid in angiotensin induced vasoconstriction. Hypertension 18 (1991). 158–164.

    PubMed  CAS  Google Scholar 

  45. Lincoln, T. M., P. Komalavilas, T. L. Cornwell: Plelotropic regulation of vasoular smooth muscle tone by cyclic GMP-dependent protein kinase. Hypertension 23 (1994), 1141–1147.

    PubMed  CAS  Google Scholar 

  46. Liu, S., J. S. Beckman, D. D. Ku: Peroxynitrite, a product of superoxide and nitric oxide, produces coronary vasorelaxation in dogs. J. Pharmacol. exp. Ther. 268 (1994), 1114–1121.

    PubMed  CAS  Google Scholar 

  47. Ludmer, P. L., A. P. Selwyn, T. L. Shook, R. R. Wayne, G. H. Mudge, R. W. Alexander, P. Ganz: Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. New Engl. J. Med. 315 (1986), 1046–1051.

    PubMed  CAS  Google Scholar 

  48. Luscher, T. F., P. M. Vanhoutte: Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8 (1986), 344–348.

    PubMed  CAS  Google Scholar 

  49. Luscher, T. F.: Endothelium in the control of vascular tone and growth: role of local mediators and mechanical forces. Blood Pressure 1, Suppl. (1994), 18–22.

    CAS  Google Scholar 

  50. Martin, W., G. M. Villani, D. Jothianandan, R. F. Furchgott: Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. exp. Ther. 232 (1985), 708–716.

    PubMed  CAS  Google Scholar 

  51. Maseri, A.: Spasm and dynamic coronary stenoses. J. cardiovasc. Pharmacol. 6, Suppl. 4 (1984), S683-S690.

    Article  PubMed  Google Scholar 

  52. Matsubara, T., M. Ziff: Superoxide anion release by human endothelial cells: synergism between a phorbol ester and a calcium ionophore. J. cell. Physiol. 127 (1986), 207–210.

    Article  PubMed  CAS  Google Scholar 

  53. Minor, R. L., Jr., P. R. Myers, R. Guerra Jr., J. N. Bates, D. G. Harrison: Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J clin. Invest. 86 (1990), 2109–2116.

    Article  PubMed  CAS  Google Scholar 

  54. Mohazzab-H., K. M., P. M. Kaminski, M. S. Wolin: NADH oxidoreductase is a major source of superoxide anion in bovine coronary endothelium. Amer. J. Physiol. 206 (1994). H2568-H2572.

    Google Scholar 

  55. Mugge, A., J. H. Elwell, T. E. Peterson, T. G. Hofmeyer, D. D. Heistad, D. G. Harrison: Chronic treatment with polyethylene-glycolated superoxide dism utase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rebbits. Circulat. Res. 69 (1991), 1293–1300.

    PubMed  CAS  Google Scholar 

  56. Münzel, T., A. Giaid, S. Kurz, D. J. Stewart, D. G. Harrison: Evidence for a role of endothelin 1 and protein kinase C in nitroglycerin tolerance. Proc. nat. Acad. Sci. (Wash.) 92 (1995), 5244–5248.

    Article  Google Scholar 

  57. Münzel, T., S. Kurz, S. Rajagopalan, M. Thoenes, W. R. Berrington, J. A. Thompson, B. A. Freeman, D. G. Harrison: Hydralazine provents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase: a new action for an old drug. J. clin. Invest. 98 (1996), 1465–1470.

    Article  PubMed  Google Scholar 

  58. Münzel, T., H. Sayegh, B. A. Freeman, M. M. Tarpey, D. G. Harrison: Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J. clin. Invest. 95 (1995), 187–194.

    Article  PubMed  Google Scholar 

  59. Münzel, T., S. Kurz, S. Rajagopalan, M. Tarpey, B. Freeman, D. G. Harrison: Identification of the membrane bound NADH oxidase as the major source of superoxide anion in nitrate tolerance (abstract). Endothelium 3, Suppl. (1995). s14.

    Google Scholar 

  60. Münzel, T., T. Heitzer, S. Kurz, D. G. Harrison, C. Luhman, L. Pape, M. Olschewski, H. Just: Dissociation of coronary vascular tolerance and neurohormonal adjustments during long-term nitroglycerin therapy in patients with stable coronary artery disease. J. Amer. Coll. Cardiol. 27 (1996), 297–303.

    Article  Google Scholar 

  61. Nabel, E. G., A. P. Selwyn, P. Ganz: Paradoxical narrowing of atherosclerotic coronary arteries induced by increases in heart rate. Circulation 81 (1990), 850–859.

    PubMed  CAS  Google Scholar 

  62. Najibi, S., R. Cohen: Enhanced role of K+channels in relaxations of hypercholesterolemic rabbit carotid artery to NO. Amer. J. Physiol. 269 (1995), H805-H811.

    PubMed  CAS  Google Scholar 

  63. Nishida, K., D. G. Harrison, J. P. Navas, A. A. Fisher, S. P. Dockery, M. Uematsu, R. M. Nerem, R. W. Alexander, T. J. Murphy: Molecular cioning and characierization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J. clin. Invest. 90 (1992), 2092–2096.

    Article  PubMed  CAS  Google Scholar 

  64. Niu, X. F., C. W. Smith, P. Kubes: Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circulat. Res. 74 (1994), 1133–1140.

    PubMed  CAS  Google Scholar 

  65. Ohara, Y., T. E. Peterson, D. G. Harrison: Hypercholesterolemia increases endothelial superoxide anion production. J. clin. Invest. 91 (1993), 2546–2551.

    Article  PubMed  CAS  Google Scholar 

  66. Ohara, Y., T. E. Peterson, H. S. Sayegh, R. R. Subramanian, J. N. Wilcox, D. G. Harrison: Dictary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation 92 (1995), 898–903.

    PubMed  CAS  Google Scholar 

  67. Packer, M., W. Lee, P. D. Kessler, S. S. Gottlieb, N. Medina, M. Yushak: Prevention and reversal of nitrate tolerance in patients with congestive heart fallure. New Engl. J. Med. 317 (1987), 799–804.

    PubMed  CAS  Google Scholar 

  68. Palmer, R. M., A. G. Ferrige, S. Moncada: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor: Nature (Lond.) 327 (1987), 524–526.

    Article  CAS  Google Scholar 

  69. Radl, R., J. W. Beckman, K. M. Bush, B. A. Freeman: Peroxynitrite induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288 (1991), 481–487.

    Article  Google Scholar 

  70. Radomski, M. W., R. M. J. Palmer, S. Moncada: Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Brit. J. Pharmacol. 92 (1987), 181–187.

    CAS  Google Scholar 

  71. Rajagopalan, S., S. Kurz, T. Münzel, M. Tarpey, B. A. Freeman, K. K. Griendling, D. G. Harrison: Angiotensin II-mediated hypertension in the rat increase vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. clin. Invest. 97 (1996), 1916–1923.

    Article  PubMed  CAS  Google Scholar 

  72. Rapoport, R. M., M. B. Draznin, F. Murad Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature (Lond.) 306 (1983), 174–176.

    Article  CAS  Google Scholar 

  73. Retsky, K. L., M. W. Freeman, B. Frei: Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. J. biol. Chem. 268 (1993), 1304–1309.

    PubMed  CAS  Google Scholar 

  74. Roth, A., D. Kulick, L. Freidenberger, R. Hong, S. H. Rahimtoola, U. Elkayam: Early tolerance to hemodynamic effects of high dose transdermal nitroglycerin in responders with ssvere chronic heart fallure. J. Amer. Coll. Cardiol. 9 (1987), 858–864.

    CAS  Google Scholar 

  75. Rubanyi, G. M., P. M. Vanhoutte: Oxygen-derived free radicals, endothelium and responsiveness of vascular smooth muscle. Amer. J. Physiol. 250 (1986), H815-H821.

    PubMed  CAS  Google Scholar 

  76. Tagawa, H., H. Tomoike, W. Mitsuoka, S. Satoh, T. Kuga, H. Shimokawa, M. Nakamura, A. Takeshita: Hyperreactivity of aortic smooth muscle to serotonin is related to the presence of atheroma in Watanabe heritable hyperlipidaemic rabbits. Cardiovasc. Res. 27 (1993), 2164–2169.

    Article  PubMed  CAS  Google Scholar 

  77. Ting H. H., F. K. Timini, K. S. Boles, S. J. Creager, P. Ganz, M. A. Creager: Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J. clin. Invest. 97 (1996), 22–28.

    Article  PubMed  CAS  Google Scholar 

  78. Treasure, C. B., J. L. Klein, W. S. Weintraub: Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease [see comments]. New Engl. J. Med. 332 (1995), 481–487.

    Article  PubMed  CAS  Google Scholar 

  79. Vita, J. A., C. B. Treasure, E. G. Nabel, J. M. McLenachan, R. D. Fish, A. C. Yeung, V. I. Vekshtein, A. P. Selwyn, P. Ganz: Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81 (1990), 491–497.

    PubMed  CAS  Google Scholar 

  80. Vita, J. A., C. B. Treasutre, P. Ganz, D. A. Cox, R. D. Fish, A. P. Selwyn: Control of shear stress in the epicardial coronary arteries of humans: impairment by atherosclerosis. J. Amer. Coll. Cardiol. 14 (1989), 1193–1199.

    Article  CAS  Google Scholar 

  81. Watt, G. F., B. Lewi, J. N. Brunt: Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St Thomas’ Atherosclerosis Regression Study (STARS). Lancet 339 (1992), 563–569.

    Article  Google Scholar 

  82. White, C. R., T. A. Brock, L. Y. Chang, J. Crapo, P. Briscoe, D. Ku, W. A. Bradley, S. H. Gianturco, J. Gore, B. A. Freeman et al.: Superoxide and peroxynitrite in atheroselerosis. Proc. nat. Acad. Sci. (Wash.) 91 (1994), 1044–1048.

    Article  CAS  Google Scholar 

  83. Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, T. Masaki: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature (Lond.) 332 (1988), 411–415.

    Article  CAS  Google Scholar 

  84. Yeung, A. C., V. I. Vekshtein, D. S. Krantz, J. A. Vita, T. J. Ryan, P. Ganz, A. P. Selwyn: The effect of atherosolerosis on the vasomotor response of coronary arteries to mental stress. New Engl. J. Med. 325 (1991), 1551–1556.

    Article  PubMed  CAS  Google Scholar 

  85. Zeiher, A. M., H. Drexler, H. Wollschlaeger, B. Saurbier, H. Just: Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J. Amer. Coll. Cardiol. 14 (1989), 1181–1190.

    Article  CAS  Google Scholar 

  86. Zhao, X. Q., B. G. Brown, L. Hillger: Effects of intensive lipid-lowering therapy on the coronary arteries of asymptomatic subjects with elevated apolipoprotein B. Circulation 88 (1993), 2744–2753.

    PubMed  CAS  Google Scholar 

  87. Zierhut, W., H. A. Ball: Prevention of vascular nitroglycerin tolerance by inhibition of protein kinase C. Brit. J. Pharmacol. 119. (1996), 3–5.

    CAS  Google Scholar 

  88. Zimrin, D., N. Reichek, K. T. Bogin, G. Aurigemma, P. Douglas, B. Berko, H. L. Fung: Antianginal effects of intravenous nitroglycerin over 24 hours. Circulation 77 (1988). 1376–1384.

    PubMed  CAS  Google Scholar 

  89. Pearson, J. D.: Baillers Clin. Haemat. 7 (1994), 441–452.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Münzel, T., Heitzer, T. & Harrison, D.G. The physiology and pathophysiology of the nitric oxide/superoxide system. Herz 22, 158–172 (1997). https://doi.org/10.1007/BF03044353

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03044353

Key Words

Schlüsselwörter

Navigation