Advertisement

Herz

, Volume 22, Issue 3, pp 158–172 | Cite as

The physiology and pathophysiology of the nitric oxide/superoxide system

  • T. Münzel
  • T. Heitzer
  • D. G. Harrison
Coronary Atherosclerosis

Summary

The endothelium modulates vascular tone by producing vasodilator vasoconstrictor substances. Of these, the most well characterized and potentially important are NO and.O2 . These small molecules exhibit opposing effects on vascular tone, and chemically react with each other in a fashion which negates their individual effects and leads to the production of potentially toxic substances. These dynamic interactions may likely have important implications, altering not only tissue perfusion but also contributing to the process of atherosclerosis..NO is produced in endothelial cells by an enzyme termed nitric oxide synthase. The endothelial.NO-synthase is activated when the intracellular level of calcium is increased. This occurs in response to neurohormonal stimuli and in response to shear stress. Acetylcholine and substance P are examples of neurohumoral substances that are able to stimulate the release of nitric oxide and to assess endothelial regulation of vasomotor tone. Importantly, the vasodilator potency of nitric oxide released by the endothelium is abnormal in a variety of diseased states such as hypercholesterolemia, atherosclerosis and diabetes mellitus. This may be secondary to decreased synthesis of nitric oxide or increased degradation of nitric oxide due to superoxide anions. More recent experimental observations demonstrate increased production of superoxide in atherosclerosis, diabetes mellitus and high renin hypertension suggesting that endothelial dysfunction in these states is rather secondary to increased.NO metabolism rather than due to decreased synthesis of.NO. Superoxide rapidly reacts with nitric oxide to form the highly reactive intermediate peroxynitrite (ONOO). Peroxynitrite can be protonated to form peroxynitrous acid which in turn can yield the hydroxyl radical (OH.). These reactive species can oxidize lipids, damage cell membranes, and oxidize thiol groups..NO given locally, exerts potent antiatherosclerotic effects such as inhibition of platelet aggregation, inhibition of adhesion of leukocytes and the expression of leukocyte adhesion molecules. It is important to note, however, that in-vivo treatment with.NO (via organic nitrates) increases rather than decreases oxidant load within endothelial cells. It remains therefore questionable whether systemic treatment with.NO may have antiatherosclerotic properties or whether.NO may initiate or even accelerate the atherosclerotic process.

Key Words

Endothelium Atherosclerosis Peroxinitrite Vitamin C Nitrate tolerance 

Physiologie und Pathophysiologie des Stickstoffmonoxid-Superoxid-Systems

Zusammenfassung

Das Endothel reguliert durch die Produktion vasodilatierender und vaskonstriktorisch wirkender Substanzen in entscheidendem Maße den Gefäßtonus. Zu den am besten charakterisierten Molekülen gehören Stickstoffmonoxid (.NO) und das Superoxidanion (.O2 )..NO wird im Endothel durch das Enzym.NO-Synthase aus der Aminosäure L-Arginin gebildet. Die wichtigsten physiologischen Stimuli zur.NO-Bildung sind die pulsatile Dehnung der Gefäßwand sowie die Scherkräfte, die auf das Endothel einwirken. Pharmakologisch kann die Freisetzung von.NO in vitro und in vivo durch die Gabe von Acetylcholin induziert werden, ein Verfahren, das mit Erfolg zur Endothelfunktionsdiagnostik in peripheren Arterien und Koronararterien eingesetzt wird. Die vasodilatierende Wirkung von.NO ist im Rahmen von verschiedenen Erkrankungen wie arterielle Hypertonie, Hypercholesterinämie und Diabetes mellitus deutlich abgeschwächt. Dies kann jedoch nicht auf eine verminderte.NO-Bildung zurückgeführt werden, da die Aktivität bzw. die Expression des Enzyms endotheliale.NO-Synthase bei diesen Erkrankungen eher kompensatorisch gesteigert als abgeschwächt ist. Neuere tierexperimentelle Untersuchungen konnten nachweisen, daß bei diesen Krankheitsbildern die endotheliale Superoxidproduktion ebenfalls angekurbelt ist. Somit kommt einem erhöhten.NO-Metabolismus durch.O2 reagiert rasch mit.NO unter der Bildung des instabilen Metaboliten Peroxynitrit (ONOO). Durch eine Protonierungsreaktion kann letztendlich das Hydroxylradikal entstehen, das wiederum Lipide und Thiolgruppen oxidieren und Membranen schädigen kann. In vitro konnten für.NO vielschichtige antiarteriosklerotische Eigenschaften. wie zum Beispiel Inhibition der Expression von Leukozytenadhäsionsmolekülen und Inhibition der Plättchenaggregation, nachgewiesen werden. In-vivo-Behandlung mit.NO (zum Beispiel in Form von Nitroglycerin) führt in Tiermodellen nachweislich eher zu einer Steigerung als zu einer Reduktion der endothelialen Superoxidbildung. Somit bleibt abzuwarten, ob durch eine Therapie mit.NO der bei Patienten mit manifester koronarer Herzkrankheit (und somit erhöhtem oxidativen Streß in der Gefäßwand) die Arteriosklerose positiv beeinflußt wird oder ob durch die Invivo-.NO-Gabe der arteriosklerotische Prozeß nicht eher beschleunigt wird.

Schlüsselwörter

Endothel Arteriosklerose Peroxynitrit Vitamin C Nitrattoleranz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, T. J., I. Meredith, A. C. Yeung, B. Frei, A. P. Selwyn, P. Ganz: The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion [see comments]. New Engl. J. Med. 332 (1995).Google Scholar
  2. 2.
    Andrea, J. E., M. P. Walsh: Protein kinase C of smooth muscle. Hypertension 20 (1992), 585–595.PubMedGoogle Scholar
  3. 3.
    Bauersachs, J., M. Hecker, R. Busse: Display of the characteristics of endothelium-derived hyperpolarizing factor by a cytochrome P450- derived arachidonic acid metabolite in the coronary microcirculation. Brit. J. Pharmacol. 113 (1994), 1548–1553.Google Scholar
  4. 4.
    Beckman, J. S., Z. Y. Ye, P. G. Anderson, J. Chen, M. A. Accavetti, M. M. Tarpey, C. R. White: Extensive nitration of protein tyrosines in human atheroselerosis detected by immunohistochemistry. Hoppe-Seylers Z. physiol. Chem. 375 (1994), 81–88.Google Scholar
  5. 5.
    Bevilacqua, M. P.: Endothelial-leucocyte adhesion molecules. Ann. Rev. Immunol. 11 (1993), 767–804.CrossRefGoogle Scholar
  6. 6.
    Bolotina, V. M., S. Najibi, J. J. Palacino, P. J. Pagano, R. A. Cohen: Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature (Lond.) 368 (1994), 850–853.CrossRefGoogle Scholar
  7. 7.
    Cayette, A. J., J. J. Palacino, K. Horten, R. A. Cohen: Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemicrabbits. Arterloscler. Thrombos. 14 (1994), 753–759.Google Scholar
  8. 8.
    Celermajer, D. S., K. E. Sorensen, V. M. Gooch, D. J. Spiegelhalter, O. I. Miller, I. D. Sullivan, J. K. Lloyd J. E. Deanfleld: Noninvasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 340 (1992), 1111–1115.PubMedCrossRefGoogle Scholar
  9. 9.
    Cox, D. A., J. A. Vita, C. B. Treasusre, R. D. Fish, R. W. Alexander, P. Ganz, A. P. Selwyn: Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 80 (1989), 458–465.PubMedGoogle Scholar
  10. 10.
    Creager, M. A, J. P. Cooke, M. E. Mendelsohn, S. J. Gallagher, S. M. Coleman, J. Loscalzo, V. J. Dzau: Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J. clin. Invest. 86 (1990), 228–234.PubMedCrossRefGoogle Scholar
  11. 11.
    Drexler, H., A. M. Zeiher, H. Wollschlaeger, T. Meinertz, H. Just, T. Bonzel: Flow-dependent coronary artery dilatation in humans. Circulation 80 (1989), 466–474.PubMedGoogle Scholar
  12. 12.
    Drexler, H., A. M. Zeiher, W. Köster, W. Zeh, H. Wieland: Endothelial dysfunction in Ihe coronary circulation in hypercholesterolemia: effect of high HDL-cholesterol. Circulation 86, Suppl. 1 (1992), 467.Google Scholar
  13. 13.
    Egashira, K., H. Y. Kai et al.: Reduction in serum cholesterol with provastatin improves endothelium-dependent coronary vasomotion in patients with hypercholesterolemia. Circulation 89 (1994), 2519–2524.PubMedGoogle Scholar
  14. 14.
    Feelisch, M., M. Kelm: Biotransformation of organic nitrates to nitric oxide by vascular smooth muscle cells and endothelial cells. Biochem. biophys. Res. Commun. 190 (1991), 286–293.CrossRefGoogle Scholar
  15. 15.
    Feletou, M., P. M. Vanhoutte: Endothelium-dependent hyperpolarization of canine coronary smooth muscle. Brit. J. Pharmacol. 93 (1988), 515–524.Google Scholar
  16. 16.
    Frei, B, L. England, B. N. Ames: Ascorbate is an outstanding antioxidant in human blood plasma. Proc. nat. Acad. Sci. (Wash.) 86 (1989), 6377–6381.CrossRefGoogle Scholar
  17. 17.
    Frei, B., T. M. Forte, B. N. Ames, C. E. Cross: Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipoprotein properties in human blood plasma. Protective effects of ascorbic acid. Biochem. J. 277 (1991), 133–138.PubMedGoogle Scholar
  18. 18.
    Freiman, P. C., G. C. Mitchell, D. D. Heistad, M. L. Armstrong, D. G. Harrison: Atherosclerosis impairs endothelium-dependent vascular relaxation to acetylcholine and thrombin in primates. Circulat. Res. 58 (1986), 783–789.PubMedGoogle Scholar
  19. 19.
    Furchgott, R. F., J. V. Zawadzki: The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature (Lond.) 228 (1980), 373–376.CrossRefGoogle Scholar
  20. 20.
    Garg, U. C., A. Hassid: Nitric oxide-generating vasodilators and 8bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells. J. clin. Invest. 83 (1989), 1774–1777.PubMedCrossRefGoogle Scholar
  21. 21.
    Gordon, J. B., P. Ganz, E. G. Nabel, R. D. Fish, J. Zebede, G. H. Mudge, R. W. Alexander, A. P. Selwyn: Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise. J. clin. Invest. 83 (1989), 1946–1952.PubMedCrossRefGoogle Scholar
  22. 22.
    Griendling, K. K., C. A. Minieri, J. D. Ollerenshaw, R. W. Alexander: Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circulat. Res. 74 (1994), 1141–1148.PubMedGoogle Scholar
  23. 23.
    Gruetter, C. A., D. Y. Gruetter, J. E. Lyon, P. J. Kadowitz, L. J. Ignarro: Relationship between cyclic guanosine 3′∶5′-monophosphate formation and relaxation of coronary arterial smooth muscle by glyceryl trinitrate, nitroprusside, nitrite and nitric oxide: effects of methylene blue and methemoglobin. J. Pharmacol. exp. Ther. 219 (1981), 181–186.PubMedGoogle Scholar
  24. 24.
    Gryglewski, R. J., R. M. J. Palmer, S. Moncada: Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature (Lond.) 320 (1986), 454–456.CrossRefGoogle Scholar
  25. 25.
    Gyllenhammar, H.: Lucigenin chemiluminescence in the assessment of neutrophil superoxide, production. J. immunol. Meth. 97 (1987), 209–213.CrossRefGoogle Scholar
  26. 26.
    Habib, J. B., C. Bossaller, S. Wells, C. Williams, J. D. Morrisett, P. D. Henry: Preservation of endothelium-dependent vascular relaxation in cholesterol-fed rabbit by treatment with the calcium blocker PN 200110. Circulat. Res. 58 (1986), 305–309.PubMedGoogle Scholar
  27. 27.
    Harrison, D. G., M. L. Armstrong, P. C. Freiman, D. D. Heistad: Restoration of endothelium-dependent relaxation by dietary treatment of atherosclerosis. J. clin. Invest 80 (1987), 1808–1811.PubMedCrossRefGoogle Scholar
  28. 28.
    Harrison, D. G., P. C. Freiman, M. L. Armstrong, M. L. Marcus, D. D. Heistad: Alterations of vascular reactivity in atheroscierosis. Circulat. Res. 61 (1987), 1174–1180.Google Scholar
  29. 29.
    Harrison, D. G., P. J. Heald: The isolation of poly-alpha-L-glutamic acid from the oviduct of the domestic fowl. Proc. roy. Soc. Lond. B 166 (1966), 341–357.CrossRefGoogle Scholar
  30. 30.
    Harrison, D. G.: Endothelial regulation of vasomotion: a alterations in atherosclerosis. Canad. J. Cardiol. 9 (1993), 1A-6A.Google Scholar
  31. 31.
    Heistad, D. D., M. L. Armstrong, M. L. Marcus, D. J. Piegors, A. L. Mark. Augmented responses to vasoconstrictor stimuli in hypercholesterolemic and atherosclerotic monkeys. Circulat. Res. 54 (1984) 711–718.PubMedGoogle Scholar
  32. 32.
    Heitzer, T., S. Ylä-Herttuala, J. Luoma, S. Münzei, H. Just, M. Olschewski, H. Drexler: Cigarette smoking potentiates endothelial dysfunction of forearm resistance vessels in patients with hypercholesterolemia: role of oxidized LDL. Circulation 93 (1996), 1346–1353.PubMedGoogle Scholar
  33. 33.
    Heitzer, T., H. Just, T. Münzel: Antioxidant vitamin C improves endothelial dysfunction in chronic smokers. Circulation 94 (1996), 6–9.PubMedGoogle Scholar
  34. 34.
    Henry, P. D., M. Yokoyama: Supersensitivity of atherosclerotic rabbit aorta to ergonovine: mediation by a serotonergic mechanism. J. clin. Invest. 66 (1980), 306–313.PubMedCrossRefGoogle Scholar
  35. 35.
    Kifor, I., V. Dzau: Endothelial renin angiotensin pathway: evidence for intracellular synthesis and secretion of angiotensins. Circulat. Res. 60 (1987), 422–428.PubMedGoogle Scholar
  36. 36.
    Kubes, P., M. Suzuki, D. N. Granger: Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. nat. Acad. Sci. (Wash.) 88 (1991), 4651–4655.CrossRefGoogle Scholar
  37. 37.
    Lamas, S., P. A. Marsden, G. K. Li, P. Tempst, T. Michel: Endothelial nitric oxide synthase: molecular cioning and characterization of a distinet constitutive enzyme isoform. Proc. nat. Acad. Sci. (Wash.) 89 (1992), 6348–6352CrossRefGoogle Scholar
  38. 38.
    Lehr, H. A., B. Frei, A. M. Olofsson, T. E. Carew, K. E. Arfors: Protection from oxidized LDL-induced leucocyte adhesion to microvascular and macrovascular endothelium in vivo by vitamin C but not by vitamin E. Circulation 91 (1995), 1525–1532.PubMedGoogle Scholar
  39. 39.
    Lerman, A., J. C. Burnett Jr. Intact and altered endothelium in regulation of vasomotion. Circulation 86 (1992), 1112–1119.Google Scholar
  40. 40.
    Lerman, A., M. W. Webter, J. H. Chesebro, W. D. Edwards, C. M. Wei, V. Fuster, J. C. Burnett Jr.: Circulating and tissue endothelin immunoreactivity in hypercholesterolemic pigs. Circulation 88 (1993), 2923–2928.PubMedGoogle Scholar
  41. 41.
    Leung, W. H., L. C. Pak, C. K. Wong: Beneficial effect of cholesterol-lowering therapy on coronary endothelium-dependent relaxation in hypercholesterolemic patients. Lancet 341 (1993), 1496–1500.PubMedCrossRefGoogle Scholar
  42. 42.
    Levesque, M. J., R. M. Nerem: The elongation and orientation of cultured endothelial cells in response to shear stress. J. Biomech. Eng. 107 (1985), 341–347.PubMedCrossRefGoogle Scholar
  43. 43.
    Liew, F. Y., F. E. G. Cox: Nonspecific defence mechanism: the role of nitric oxide. Immunoparasitol. Today (1991).Google Scholar
  44. 44.
    Lin, L., A. Nasjiletti: Role of endothelium derived prostanoid in angiotensin induced vasoconstriction. Hypertension 18 (1991). 158–164.PubMedGoogle Scholar
  45. 45.
    Lincoln, T. M., P. Komalavilas, T. L. Cornwell: Plelotropic regulation of vasoular smooth muscle tone by cyclic GMP-dependent protein kinase. Hypertension 23 (1994), 1141–1147.PubMedGoogle Scholar
  46. 46.
    Liu, S., J. S. Beckman, D. D. Ku: Peroxynitrite, a product of superoxide and nitric oxide, produces coronary vasorelaxation in dogs. J. Pharmacol. exp. Ther. 268 (1994), 1114–1121.PubMedGoogle Scholar
  47. 47.
    Ludmer, P. L., A. P. Selwyn, T. L. Shook, R. R. Wayne, G. H. Mudge, R. W. Alexander, P. Ganz: Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. New Engl. J. Med. 315 (1986), 1046–1051.PubMedGoogle Scholar
  48. 48.
    Luscher, T. F., P. M. Vanhoutte: Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 8 (1986), 344–348.PubMedGoogle Scholar
  49. 49.
    Luscher, T. F.: Endothelium in the control of vascular tone and growth: role of local mediators and mechanical forces. Blood Pressure 1, Suppl. (1994), 18–22.Google Scholar
  50. 50.
    Martin, W., G. M. Villani, D. Jothianandan, R. F. Furchgott: Selective blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation by hemoglobin and by methylene blue in the rabbit aorta. J. Pharmacol. exp. Ther. 232 (1985), 708–716.PubMedGoogle Scholar
  51. 51.
    Maseri, A.: Spasm and dynamic coronary stenoses. J. cardiovasc. Pharmacol. 6, Suppl. 4 (1984), S683-S690.PubMedCrossRefGoogle Scholar
  52. 52.
    Matsubara, T., M. Ziff: Superoxide anion release by human endothelial cells: synergism between a phorbol ester and a calcium ionophore. J. cell. Physiol. 127 (1986), 207–210.PubMedCrossRefGoogle Scholar
  53. 53.
    Minor, R. L., Jr., P. R. Myers, R. Guerra Jr., J. N. Bates, D. G. Harrison: Diet-induced atherosclerosis increases the release of nitrogen oxides from rabbit aorta. J clin. Invest. 86 (1990), 2109–2116.PubMedCrossRefGoogle Scholar
  54. 54.
    Mohazzab-H., K. M., P. M. Kaminski, M. S. Wolin: NADH oxidoreductase is a major source of superoxide anion in bovine coronary endothelium. Amer. J. Physiol. 206 (1994). H2568-H2572.Google Scholar
  55. 55.
    Mugge, A., J. H. Elwell, T. E. Peterson, T. G. Hofmeyer, D. D. Heistad, D. G. Harrison: Chronic treatment with polyethylene-glycolated superoxide dism utase partially restores endothelium-dependent vascular relaxations in cholesterol-fed rebbits. Circulat. Res. 69 (1991), 1293–1300.PubMedGoogle Scholar
  56. 56.
    Münzel, T., A. Giaid, S. Kurz, D. J. Stewart, D. G. Harrison: Evidence for a role of endothelin 1 and protein kinase C in nitroglycerin tolerance. Proc. nat. Acad. Sci. (Wash.) 92 (1995), 5244–5248.CrossRefGoogle Scholar
  57. 57.
    Münzel, T., S. Kurz, S. Rajagopalan, M. Thoenes, W. R. Berrington, J. A. Thompson, B. A. Freeman, D. G. Harrison: Hydralazine provents nitroglycerin tolerance by inhibiting activation of a membrane-bound NADH oxidase: a new action for an old drug. J. clin. Invest. 98 (1996), 1465–1470.PubMedCrossRefGoogle Scholar
  58. 58.
    Münzel, T., H. Sayegh, B. A. Freeman, M. M. Tarpey, D. G. Harrison: Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J. clin. Invest. 95 (1995), 187–194.PubMedCrossRefGoogle Scholar
  59. 59.
    Münzel, T., S. Kurz, S. Rajagopalan, M. Tarpey, B. Freeman, D. G. Harrison: Identification of the membrane bound NADH oxidase as the major source of superoxide anion in nitrate tolerance (abstract). Endothelium 3, Suppl. (1995). s14.Google Scholar
  60. 60.
    Münzel, T., T. Heitzer, S. Kurz, D. G. Harrison, C. Luhman, L. Pape, M. Olschewski, H. Just: Dissociation of coronary vascular tolerance and neurohormonal adjustments during long-term nitroglycerin therapy in patients with stable coronary artery disease. J. Amer. Coll. Cardiol. 27 (1996), 297–303.CrossRefGoogle Scholar
  61. 61.
    Nabel, E. G., A. P. Selwyn, P. Ganz: Paradoxical narrowing of atherosclerotic coronary arteries induced by increases in heart rate. Circulation 81 (1990), 850–859.PubMedGoogle Scholar
  62. 62.
    Najibi, S., R. Cohen: Enhanced role of K+channels in relaxations of hypercholesterolemic rabbit carotid artery to NO. Amer. J. Physiol. 269 (1995), H805-H811.PubMedGoogle Scholar
  63. 63.
    Nishida, K., D. G. Harrison, J. P. Navas, A. A. Fisher, S. P. Dockery, M. Uematsu, R. M. Nerem, R. W. Alexander, T. J. Murphy: Molecular cioning and characierization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J. clin. Invest. 90 (1992), 2092–2096.PubMedCrossRefGoogle Scholar
  64. 64.
    Niu, X. F., C. W. Smith, P. Kubes: Intracellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophils. Circulat. Res. 74 (1994), 1133–1140.PubMedGoogle Scholar
  65. 65.
    Ohara, Y., T. E. Peterson, D. G. Harrison: Hypercholesterolemia increases endothelial superoxide anion production. J. clin. Invest. 91 (1993), 2546–2551.PubMedCrossRefGoogle Scholar
  66. 66.
    Ohara, Y., T. E. Peterson, H. S. Sayegh, R. R. Subramanian, J. N. Wilcox, D. G. Harrison: Dictary correction of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation 92 (1995), 898–903.PubMedGoogle Scholar
  67. 67.
    Packer, M., W. Lee, P. D. Kessler, S. S. Gottlieb, N. Medina, M. Yushak: Prevention and reversal of nitrate tolerance in patients with congestive heart fallure. New Engl. J. Med. 317 (1987), 799–804.PubMedGoogle Scholar
  68. 68.
    Palmer, R. M., A. G. Ferrige, S. Moncada: Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor: Nature (Lond.) 327 (1987), 524–526.CrossRefGoogle Scholar
  69. 69.
    Radl, R., J. W. Beckman, K. M. Bush, B. A. Freeman: Peroxynitrite induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288 (1991), 481–487.CrossRefGoogle Scholar
  70. 70.
    Radomski, M. W., R. M. J. Palmer, S. Moncada: Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Brit. J. Pharmacol. 92 (1987), 181–187.Google Scholar
  71. 71.
    Rajagopalan, S., S. Kurz, T. Münzel, M. Tarpey, B. A. Freeman, K. K. Griendling, D. G. Harrison: Angiotensin II-mediated hypertension in the rat increase vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. clin. Invest. 97 (1996), 1916–1923.PubMedCrossRefGoogle Scholar
  72. 72.
    Rapoport, R. M., M. B. Draznin, F. Murad Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature (Lond.) 306 (1983), 174–176.CrossRefGoogle Scholar
  73. 73.
    Retsky, K. L., M. W. Freeman, B. Frei: Ascorbic acid oxidation product(s) protect human low density lipoprotein against atherogenic modification. J. biol. Chem. 268 (1993), 1304–1309.PubMedGoogle Scholar
  74. 74.
    Roth, A., D. Kulick, L. Freidenberger, R. Hong, S. H. Rahimtoola, U. Elkayam: Early tolerance to hemodynamic effects of high dose transdermal nitroglycerin in responders with ssvere chronic heart fallure. J. Amer. Coll. Cardiol. 9 (1987), 858–864.Google Scholar
  75. 75.
    Rubanyi, G. M., P. M. Vanhoutte: Oxygen-derived free radicals, endothelium and responsiveness of vascular smooth muscle. Amer. J. Physiol. 250 (1986), H815-H821.PubMedGoogle Scholar
  76. 76.
    Tagawa, H., H. Tomoike, W. Mitsuoka, S. Satoh, T. Kuga, H. Shimokawa, M. Nakamura, A. Takeshita: Hyperreactivity of aortic smooth muscle to serotonin is related to the presence of atheroma in Watanabe heritable hyperlipidaemic rabbits. Cardiovasc. Res. 27 (1993), 2164–2169.PubMedCrossRefGoogle Scholar
  77. 77.
    Ting H. H., F. K. Timini, K. S. Boles, S. J. Creager, P. Ganz, M. A. Creager: Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J. clin. Invest. 97 (1996), 22–28.PubMedCrossRefGoogle Scholar
  78. 78.
    Treasure, C. B., J. L. Klein, W. S. Weintraub: Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease [see comments]. New Engl. J. Med. 332 (1995), 481–487.PubMedCrossRefGoogle Scholar
  79. 79.
    Vita, J. A., C. B. Treasure, E. G. Nabel, J. M. McLenachan, R. D. Fish, A. C. Yeung, V. I. Vekshtein, A. P. Selwyn, P. Ganz: Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81 (1990), 491–497.PubMedGoogle Scholar
  80. 80.
    Vita, J. A., C. B. Treasutre, P. Ganz, D. A. Cox, R. D. Fish, A. P. Selwyn: Control of shear stress in the epicardial coronary arteries of humans: impairment by atherosclerosis. J. Amer. Coll. Cardiol. 14 (1989), 1193–1199.CrossRefGoogle Scholar
  81. 81.
    Watt, G. F., B. Lewi, J. N. Brunt: Effects on coronary artery disease of lipid-lowering diet, or diet plus cholestyramine, in the St Thomas’ Atherosclerosis Regression Study (STARS). Lancet 339 (1992), 563–569.CrossRefGoogle Scholar
  82. 82.
    White, C. R., T. A. Brock, L. Y. Chang, J. Crapo, P. Briscoe, D. Ku, W. A. Bradley, S. H. Gianturco, J. Gore, B. A. Freeman et al.: Superoxide and peroxynitrite in atheroselerosis. Proc. nat. Acad. Sci. (Wash.) 91 (1994), 1044–1048.CrossRefGoogle Scholar
  83. 83.
    Yanagisawa, M., H. Kurihara, S. Kimura, Y. Tomobe, M. Kobayashi, Y. Mitsui, Y. Yazaki, K. Goto, T. Masaki: A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature (Lond.) 332 (1988), 411–415.CrossRefGoogle Scholar
  84. 84.
    Yeung, A. C., V. I. Vekshtein, D. S. Krantz, J. A. Vita, T. J. Ryan, P. Ganz, A. P. Selwyn: The effect of atherosolerosis on the vasomotor response of coronary arteries to mental stress. New Engl. J. Med. 325 (1991), 1551–1556.PubMedCrossRefGoogle Scholar
  85. 85.
    Zeiher, A. M., H. Drexler, H. Wollschlaeger, B. Saurbier, H. Just: Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J. Amer. Coll. Cardiol. 14 (1989), 1181–1190.CrossRefGoogle Scholar
  86. 86.
    Zhao, X. Q., B. G. Brown, L. Hillger: Effects of intensive lipid-lowering therapy on the coronary arteries of asymptomatic subjects with elevated apolipoprotein B. Circulation 88 (1993), 2744–2753.PubMedGoogle Scholar
  87. 87.
    Zierhut, W., H. A. Ball: Prevention of vascular nitroglycerin tolerance by inhibition of protein kinase C. Brit. J. Pharmacol. 119. (1996), 3–5.Google Scholar
  88. 88.
    Zimrin, D., N. Reichek, K. T. Bogin, G. Aurigemma, P. Douglas, B. Berko, H. L. Fung: Antianginal effects of intravenous nitroglycerin over 24 hours. Circulation 77 (1988). 1376–1384.PubMedGoogle Scholar
  89. 89.
    Pearson, J. D.: Baillers Clin. Haemat. 7 (1994), 441–452.CrossRefGoogle Scholar

Copyright information

© Urban & Vogel 1997

Authors and Affiliations

  • T. Münzel
    • 2
    • 1
  • T. Heitzer
    • 2
    • 1
  • D. G. Harrison
    • 2
    • 1
  1. 1.the Emory UniversityAtlantaUSA
  2. 2.Abteilung für KardiologieUniversitätsklinik EppendorfHamburgGermany

Personalised recommendations