Advertisement

Herz

, Volume 23, Issue 4, pp 269–279 | Cite as

Hochfrequenzstromablation von ektopen atrialen Tachykardien

Unterschiedliche Mapping-Strategien zur Lokalisation rechts- und linsseitiger Ursprungsorte
  • Christian Weiß
  • Stephan Willems
  • Riccardo Cappato
  • Karl -Heinz Kuck
  • Thomas Meinertz
Nichtmedikamentöse Therapie Supraventrikulärer Arrhythmien

Zusammenfassung

Die Hochfrequenzstrom-(HFS)-Ablation stellt in den letzten Jahren ein neues kuratives Therapieverfahren für ektope atriale Tachykardien (EAT) dar. Wir untersuchten unterschiedliche Mapping-Strategien bei der HFS-Ablation von rechts- und linksseitigen EAT-Foki. Eingeschlossen in die Studie wurden 48 Patienten (35±18 Jahre) mit 52 EAT-Foki. Zur Lokalisation der Foki verwendeten wir das Aktivierungs-Mapping im bipolaren Lokalelektrogramm und die morphologische Beurteilung des unipolaren Lokalelektrogramms (QS-Komplex). Im Falle von mechanischen Blockierungen wurden die stimulierten P-Wellen im Oberflächen-EKG mit den P-Wellen während EAT verglichen.Ergebnisse: Bei 44 Patienten konnten 46 EAT (zehn links- und 36 rechtsseitige) durch HFS-Ablation terminiert werden. Bei den linksseitigen EAT waren 40% in dem Bereich der Pulmonalvenen lokalisiert. Die durchschnittliche Prozedurund Durchleuchtungsdauer unterschied sich nicht zwischen links-(304±131 min bzw. 39±29 min) und rechtsseitiger, (241±101 min bzw. 31±19 min) Lokalisation. Das Intervall zwischen dem Lokalelektrogramm und dem Beginn der P-Welle war bei links- (45±22 ms) im Vergleich zu rechtsseitiger (30±18 ms) Fokuslokalisation signifikant länger. Bei zehn Patienten (20%) kam es während des Mappings zu mechanischen Blockierungen. Die Lokalisation des Ursprungsorts während mechanischer Blockierung gelang mit Hilfe des Vergleichs der P-Welle von EAT und Stimulation in acht Fällen. Bei zwei Patienten kam es innerhalb von 24 Stunden zum erneuten Auftreten der EAT.

Während der Nachbeobachtung von vier bis 58 Monaten kam es drei bis acht Monate nach Ablation bei vier Patienten (8%) zu einem Rezidiv der EAT.

Schlußfolgerungen: 1. Die HFS-Ablation von EAT ist sowohl für links- als auch rechtsseitige Ursprungsorte ein effektives und risikoarmes. Therapieverfahren. Die Prozedur- und Durchleuchtungsdauer unterscheiden sich nicht bei rechts- und linksseitiger Lokalisation. 2. Durch häufige Lokalisationen linksseitiger EAT in dem Bereich der Pulmonalvenen zeigt das Aktivierungs-Mapping hier ein früheres Lokalelektrogramm im Verhältnis zur P-Welle als bei rechtsseitigen EAT. 3. Es kommt in etwa 20% der HFS-Ablationen von EAT zu mechanischen Blockierungen. Während Blockierung kann der Vergleich der stimulierten P-Welle mit der EAT-P-Welle eine nützliche Hilfe zur Lokalisation des Ursprungs der EAT darstellen.

Schlüsselwörter

Ektope atriale Tachykardien Hochfrequenzstromablation Pulmonalvenen 

Radiofrequency catheter ablation of ectopic atrial tachycardias: Different mapping strategies to localize right and left sided foci

Abstract

Ectopic atrial tachycardia (EAT) is a rare form of supraventricular tachycardia and often drug-resistant. Radiofrequency catheter (RFC) ablation offers an alternative therapy suggesting a high efficacy rate. Localization of the EAT origin is proposed to be efficacious by various mapping strategies. We analyzed the efficacy of different mapping strategies for localization of right and left sided EAT foci.

Methods and Patients: In a cohort of 48 patients (25 female; age 35±18 years) RFC ablation of 40 right and 12 left sided EAT foci was performed. Mapping of the right atrium was achieved with 2 ablation catheters using the “encircling” technique (Figure 1). We looked for an early bipolar local electrogram in relation to the onset of the P-wave and a QS-complex in the unipolar electrogram. The bipolar local electrogram was retrospectively analyzed for a fragmented morphology and duration of more than 50 ms (Figure 3). In case of mechanical block of the EAT during mapping P-wave pace mapping over the mapping catheter was performed (Figure 4).

Results: RFC ablation succeeded in 44 patients with 46 EAT foci (Figure 5). Left sided EAT origin was in 40% in the region of the pulmonary veins. Two left sided foci were abladed within the coronary sinus. An anteroseptal location in vicinity to the bundle of His was found in 4 cases (Figure 6). There were no differences between left and right sided origin regarding session duration (304±131 vs 241±101 min) and fluoroscopic time (39±29 vs 31±19 min). The activation time related to the onset of the P-wave was at successful ablation site for left sided origin significantly earlier compared to a right sided origin (45±22 vs 30±18 ms). Fragmentation of the bipolar local electrogram was found before successful RFC application in 86% in the left and in 65% in the right atrium. The unipolar electrogram showed in 87% of all cases a QS-complex before the successful RFC pulse. In 16% a beat to beat change of the unipolar electrogram could be found at successful ablation site (Figure 7). Both criteria had a low specifity and sensitivity. Mechanical block could be induced during mapping in 10 patients (20%). In these cases RFC application at a site with a perfect match of P-wave pace mapping succeeded in 8 patients. In 2 patients the same EAT occurred within the following 24 hours.

During a follow-up of 4 to 58 months there were additionally recurrence of EAT in 3 patients (3 to 6 months after ablation). No influence of the AV nodal conduction was observed after ablation of anteroseptal EAT foci. Other acute or chronic complications were not observed.

Conclusions: 1. RFC ablation of right and left sided EAT foci is a safe and efficacious treatment. There were no differences regarding session duration and fluoroscopic time between right and left sided foci. 2. Activation mapping showed an earlier activation time for left sided origin compared to right sided. 3. Mechanical block could be induced in 20% of cases. P-wave pace mapping might offer a strategy to localize the focus during mechanical block.

Key Words

Ectopic atrial tachycardia Radiofrequency catheter ablation Pulmonary vein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Garson AJ, Moak JP, Friedman RA, et al. Surgical treatment of arrhythmias in children. Cardiol Clin 1989;7:319–29.PubMedGoogle Scholar
  2. 2.
    Gillette P, Garson A. Electrophysiologic and pharmacologic characteristics of automatic ectopic atrial tachycardia. Circulation 1977;56:571–5.PubMedGoogle Scholar
  3. 3.
    Gillette PC, Wampler DG, Garson AJ, et al. Treatment of atrial automatic tachydardia by ablation procedures. J Am Coll Cardiol 1985;6:405–9.PubMedGoogle Scholar
  4. 4.
    Haines DE. The biophysics of radiofrequency catheter ablation in the heart: The importance of temperature monitoring. Pace 1993;16:586–91.PubMedGoogle Scholar
  5. 5.
    Hatala R, Weiss C, Koschyk K, et al. RFC ablation of left atrial tachycardia originating within the pulmonary vein in a patient with dextrocardie. Pacing Clin Electrophysiol 1996;19:999–1002.PubMedCrossRefGoogle Scholar
  6. 6.
    Hoffmann E, Reihmann C, Nimmermann C, et al. Electroanatomic mapping of atrial activation during atrial tachycardia. Pace 1997;20:49.Google Scholar
  7. 7.
    Jackman WM, Wang XZ, Friday KJ, et al. Catheter ablation of accessory atrioventricular pathways (Wolff-Parkinson-White syndrome) by radiofrequency current. N Engl J Med 1991;324:1605–11.PubMedGoogle Scholar
  8. 8.
    Jais P, Haissaguerre M, Shah DC, et al. A focal source of atrial fibrillation treated by discrete radioablation. Circulation 1997;95:572–6.PubMedGoogle Scholar
  9. 9.
    Kalman J, Oigin J, Fitzpatrick A, et al. „Cristal tachycardia” — relationship of atrial tachycardias to the crista terminalis identified using intracardiac echocardiography. Pace 1995;18:261.Google Scholar
  10. 10.
    Kawano S, Hiraoka M. P wave mapping in ectopic atrial rhythm. In: Yasui S, Aboldskov JA, Yamada K, et al., eds. Advances in body surface mapping and high resolution ECG. Nagoya Japan: Life medicom, 1995;47–56.Google Scholar
  11. 11.
    Kay GN, Chong F, Epstein AE, et al. Radiofrequency ablation for treatment of primary atrial tachycardias: J Am Coll Cardiol 1993;21:901–9.PubMedGoogle Scholar
  12. 12.
    Kottkamp H, Hindricks G, Breithardt G, et al. Three dimensional catheter technology: electroanatomical mapping of the right atrium and ablation of ectopic atrial tachycardia. J Cardiovasc Electrophysiol 1997;8:1332–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Kunze KP, Kuck KH, Schlüter M. Effect of encainide and flecainide in chronic ectopic atrial tachycardia. J Am Coll Cardiol 1986;7:1121–6.PubMedGoogle Scholar
  14. 14.
    Lau YR, Gillette PC, Wienecke MM, et al. Successful radiofrequency catheter ablation of an atrial ectopic tachycardia in an adolescent. Am Heart J 1992;123:1384–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Lesh MD, van Hare GF, Schamp DJ, et al. Curative percutaneous catheter ablation using radiofrequency energy for accessory pathways in all locations: Results in 100 consecutive patients. J Am Coll Cardiol 1992;19:1303–9.PubMedGoogle Scholar
  16. 16.
    Lesh M, van Hare G, Epstein L. RF catheter ablation of atrial arrhythmias-results and mechanism. Circulation 1994;89:1074–89.PubMedGoogle Scholar
  17. 17.
    Lesh MD, Kalman JM. To fumble flutter or tackle „Tach”? Toward updated classifiers for atrial tachyarrhythmias. J Cardiovasc Electrophysiol 1996;7:460–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Moro C, Rufilanchas JJ, Tamargo J, et al. Evidence of abnormal automaticity and triggering activity in incessant ectopic atrial tachycardia. Am Heart J 1988;116:552.CrossRefGoogle Scholar
  19. 19.
    Narula O. Sinius node reentry — A mechanism for supraventricular tachycardia. Circulation 1974;50:1114–28.PubMedGoogle Scholar
  20. 20.
    Packer DL, Bardy GH, Worley SJ, et al. Tachycardia-induced cardiomyopathy: A reversible form of left ventricular dysfunction. Am J Cardiol 1986;57:563–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Pahlajani D, Miller R. Sinus node re-entry and sinus node tachycardia. Am Heart J 1975;90:305–11.PubMedCrossRefGoogle Scholar
  22. 22.
    Pappone C, Stabile G, DeSimone A, et al. Role of catheter-induced mechanical trauma in localization of target sites of radiofrequency ablation of automatic atrial tathycardia. J Am Coll Cardiol 1996;27:1090–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Saffitz JE, Kanter HL, Green KG, et al. Tissue-specific determinants of anisotropic conduction velocity in canine atrial and ventricular myocardium. Circ Res 1994;74:1065–70.PubMedGoogle Scholar
  24. 24.
    Poty H, Saoudi N, Haissaguerre M, et al. Radiofrequency catheter ablation of atrial tachycardias. Am Heart J 1996;131:481–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Seals AA, Laurie GM. Surgical treatment of right atrial focal tachycardia in adults. J Am Coll Cardiol 1988;11:1111–7.PubMedCrossRefGoogle Scholar
  26. 26.
    Scheinman MM. Catheter ablation for cardiac arrhythmias, personnel, and facilities. North American Society of Pacing and Electrophysiology Ad Hoc Committee on Catheter Ablation. Pace 1992;15:715–21.PubMedGoogle Scholar
  27. 27.
    Silka MJ, Gilette PC, Garson A, et al. Transvenous catheter ablation of a right atrial automatic ectopic tachycardia. Am J Coll Cardiol 1985;6:405–9.CrossRefGoogle Scholar
  28. 28.
    Shenasa H, Sorrentino RA, Greenfield RA, et al. Characteristics of successful radiofrequency catheter ablation of ectopic atrial tacycardia. Circulation 1993;88:1–583.Google Scholar
  29. 29.
    Sippens-Groenewegen A, Peeters HA, Jessurum ER, et al. Body surface mapping during pacing at multiple sites in the human atrium: P-wave morphology of ectopic right atrial activation. Circulation 1998;97:369–81.Google Scholar
  30. 30.
    Tang CW, Scheinman MM, van Hare GF, et al. Use of P wave configuration during atrial tachycardia to predict site of origin. J Am Coll Cardiol 1995;26:1315–24.PubMedCrossRefGoogle Scholar
  31. 31.
    Tracy CM, Swartz JF, Fletcher RD, et al. Radiofrequency catheter ablation of ectopic atrial tachycardia using paced activation sequence mapping. J Am Coll Cardiol 1993;21:910–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Waldo AL, Vitikainen KL, Kaiser GA, et al. The P wave and P-R interval, effects of the site of origin of atrial depolarization. Circulation 1970;42:653–71.PubMedGoogle Scholar
  33. 33.
    Walsh EP, Saul JP, Hulse JE, et al. Transcatheter ablation of ectopic atrial tachycardia in young using radiofrequency current. Circulation 1992;86:1138–46.PubMedGoogle Scholar
  34. 34.
    Weiss C, Siebeis J, Hebe J, et al. Determination of the site for radiofrequency current ablation of ectopic atrial tachycardia based on local activation potentials. Circulation 1993;Suppl 2: 583.Google Scholar
  35. 35.
    Weiss C, Hatala R, Duckeck W, et al. Radiofrequency current ablation of ectopic atrial tachycardia: clinical experience and problems. Eur Heart J 1994;15:410.Google Scholar
  36. 36.
    Weiss C, Hatala R, Cappato R, et al. The „encircling” mapping technique a simplified approach to radiofrequency ablation of ectopic atrial tachycardia. J Am Coll Cardiol 1994;Suppl I:82A.Google Scholar
  37. 37.
    Wyndham RC, Arnsdorf MF, Levitzky S, et al. Successful surgical excission of focal paroxysmal atrial tachycardia. Circulation 1980;62:1365–72.PubMedGoogle Scholar

Copyright information

© Urban & Vogel 1998

Authors and Affiliations

  • Christian Weiß
    • 1
  • Stephan Willems
    • 1
  • Riccardo Cappato
    • 2
  • Karl -Heinz Kuck
    • 2
  • Thomas Meinertz
    • 1
  1. 1.Abteilung für KardiologieUniversitätskrankenhaus EppendorfHamburg
  2. 2.2. Medizinische Abteilung für KardiologieAllgemeines Krankenhaus St.-GeorgHamburg

Personalised recommendations