Advertisement

Herz

, Volume 22, Issue 2, pp 72–86 | Cite as

Neue Entwicklungen der parameterorientierten röntgendensitometrischen Perfusionsanalyse im Rahmen von Herzkatheteruntersuchungen

  • M. Haude
  • G. Caspari
  • D. Baumgart
  • P. Spiller
  • G. Heusch
  • R. Erbel
Neue Methoden zur Analyse der Myokardperfusion Teil II

Zusammenfassung

Die röntgendensitometrische Analyse von digitalen Subtraktionsangiokardiogrammen erlaubt eine qualitative und quantitative Erfassung des Kontrastmitteldurchstroms durch das epikardiale, das kapilläre und das koronarvenöse Gefäßsystem. Aus den so gewonnenen Dichte-Zeit-Kurven (Densogrammen) können Parameter berechnet werden, welche eine Beurteilung der lokalen Myokardperfusion erlauben. Diese sehr zeit- und rechenintensiven Vorgänge erlaubten bisher nur eine Anwendung in wenigen Zentren und waren praktisch nicht in das Routinevorgehen im Rahmen von Herzkatheteruntersuchungen zu integrieren. Erst durch Verbesserung der Computerhardware (Prozessorgeschwindigkeit, Festplattenspeicher, Digitalisierkarten), insbesondere jedoch durch eine softwaregesteuerte Automatisierung des EKG-getriggerten Bilddigitalisiervorgangs mit deutlich verbesserter zeitlicher Auflösung, durch semiautomatische Meßfensterpositionierung inklusive Referenzmeßfensterpositionierung zur Erfassung von Hintergrunddichteschwankungen und durch qualitätskontrollierte Parameteranalyse der Densogramme ist eine routinemäßige Anwendung im Rahmen von Herzkatheteruntersuchungen möglich geworden. Tierexperimentelle Untersuchungen stellten eine enge Beziehung zwischen dem so gewonnenen Parameter „Anstiegszeit” der Densogramme und der mittels farbkodierter Mikrosphärentechnik bestimmten lokalen Myokardperfusion dar. Klinische Anwendungen dieser Technik konnten zeigen, daß die poststenotische myokardiale Perfusionreserve, definiert als Quotient aus der Anstiegszeit vor und während pharmakologisch (Papaverin) induzierter Hyperämie, nach koronarer Ballonangioplastie und nach zusätzlicher Gefäßstützen-implantation verbessert wird, diese aber erst nach Gefäßstützenimplantation das intraindividuelle Referenzniveau, welches von einer nicht stenosierten Koronararterie versorgt wird, erreicht. Diese Ergebnisse verdeutlichen den zusätzlichen funktionellen Aspekt der koronaren Gefäßstützen-implantation auf die poststenotische Myokardperfusion zusätzlich zu dem morphologischen Aspekt der optimierten Gefäßlumenweitung.

New developments in X-ray densitometric evaluation of myocardial perfusion during cardiac catheterization

Summary

X-ray densitometric evaluation of digital subtraction coronary arteriograms allows a qualitative and quantitative detection of contrast medium propagation through the epicardial coronary arteries, the capillary system and the coronary venous system. So-called “time-density-curves” (TDCs) can be generated following Lambert-Beer’s law similar to indicator dilution curves by using contrast medium as the indicator. Several time and density parameters can be derived from these TDCs, which are related to local myocardial perfusion. Different animal validation studies have shown the applicability of this concept for in-vivo evaluation of coronary blood flow and myocardial perfusion. Nevertheless, absolute measurement of volumetric coronary blood flow or myocardial perfusion failed. Therefore, relative changes in coronary blood flow or myocardial perfusion in response to pharmacologically induced maximum hyperemia were measured and coronary or myocardial perfusion reserve was calculated as the ratio of hyperemic flow or perfusion devided by baseline values. Despite theoretical attractions for an application during routine cardiac catheterization, this densitometric approach did not get a wide acceptance. Primary reason for this limited use in specialized centers was the time consuming process of densitometric evaluation of the subtraction coronary arteriograms, which require digital cine angiography and necessitates enormous computer hard ware. This main limitation has been overcome since more powerful computer hard ware (processor speed, hard disk space, digitization boards) has become rapidly available during the last years at more moderate pricing and digital techniques today are state of the art in cardiac catheterization laboratories. In addition, soft ware program packages allowed an automatization of the digitization and densitometric evaluation process. These programs include ECG triggered cine image digitization with improved temporal resolution, semiautomatic definition of regions-of-interest including definition of reference regions-of-interest for the detection of background density changes and quality-controlled densitometric parameter analysis. This progress made an application during routine cardiac catheterization feasible.

In animal validation studies this improved X-ray densitometric approach for evaluation of local myocardial perfusion was validated versus colour-coded microsphere techniques. The time parameter “rise time”, defined as the time from the start of local contrast medium induced density change to its maximum, revealed a close correlation (r2=0,965) to the results of the microsphere technique over a wide range of perfusion.

We have applied this technique before and after coronary interventions such as balloon angioplasty and stenting. Results documented an improvement of poststenotic myocardial perfusion reserve immediately after coronary balloon angioplasty and an additional improvement after adjunct coronary stenting. Only after stenting but usually not after coronary balloon angioplasty alone poststenotic myocardial perfusion reserve gained the intraindividual reference level, measured in a perfusion bed supplied by an epicardial coronary artery without stenoses. These results documented the functional benefit of coronary stenting on poststenotic myocardial perfusion in addition to the well known morphologic benefit with the creation of a larger and more circular conduit.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Agati, L., P. Voci, F. Bilotta, R. Luongo, C. Iacoboni, F. Fedele, A. Dagianti: Dipyridamole myocardial contrast echocardiography in patients with single-vessel coronary artery disease: perfusion, anatomic, and functional correlates. Amer. Heart J. 128 (1994), 28–35.PubMedCrossRefGoogle Scholar
  2. 2.
    Brennecke, R., H. J. Hahne, K. Moldenhauer, J. H. Bürsch, P. H. Heintzen: A special purpose processor for digital angiocardiography. Design and applications. Proc Comp Cardiol, IEEE Comp. Soc. (1979), 343–346.Google Scholar
  3. 3.
    Brennecke, R., T. K. Brown, J. H. Bürsch, P. H. Heintzen: Computerized video-image preprocessing with applications to cardioangiographics roentgen-image. In: Nagel, H. H. (ed.): Digital image processing. Springer, Berlin-Heidelberg-New York 1977, p. 244–262.Google Scholar
  4. 4.
    Brown, B. G.: Response of normal and diseased epicardial coronary arteries to vasoactive drugs: quantitative arteriographic studies. Amer. J. Cardiol. 56 (1985), 23E-29E.PubMedCrossRefGoogle Scholar
  5. 5.
    Brush, J., R. Cannon, W. Schenke, R. Bonow, M. Leon, B. Maron, S. Epstein: Angina due to coronary microvascular disease in hypertensive patients without left ventricular hypertrophy. New Engl. J. Med. 319 (1988), 1302–1307.PubMedGoogle Scholar
  6. 6.
    Bürsch, J. H.: Use of digitized functional angiography to evaluate arterial blood flow. Cardiovasc. intervent. Radiol. 6 (1983), 303–310.PubMedCrossRefGoogle Scholar
  7. 7.
    Bürsch, J. H., H. J. Hahne, C. Beyer, S. Seemann, L. Meissner, R. Brennecke, P. H. Heintzen: Myocardial perfusion studies by digital angiography. Proc. Comp. Cardiol. IEEE Comp. Soc. (1983), 343–346.Google Scholar
  8. 8.
    Bürsch, J. H., H. J. Hahne, R. Brennecke, P. H. Heintzen: Digitale Funktionsangiographie — Eine Methode zur arteriellen Durch-blutungsmessung. Radiologe 23 (1983), 202–207.PubMedGoogle Scholar
  9. 9.
    Bürsch, J. H., H. J. Hahne, R. Brennecke, D. Grönemeyer, P. H. Heinntzen: Assessment of arterial blood flow measurements by digital angiography. Radiology 14 (1981), 39–47.Google Scholar
  10. 10.
    Cannon, R., W. Schenke, B. Maron, C. Tracy, M. Leon, O. Brush, D. Rosing, S. Epstein: Differences in coronary flow and myocardial metabolism at rest and during pacing between patients with obstructive and patients with nonobstructive hypertrophic cardiomyopathy. J. AMer. Coll. Cardiol. 10 (1987), 53–62.Google Scholar
  11. 11.
    Cannon, R., D. Rosing, B. Maron, M. Leon, R. Bonow, R. Watson, S. Epstein: Myocardial ischemia in patients with hypertrophic cardiomyopathy: Contribution of inadequate vasodilator reserve and elevated left ventricular filling pressures Circulation 71 (1985), 234–239.PubMedGoogle Scholar
  12. 12.
    Clarke, G. D., R. Eckels, C. Chaney, D. Smith, J. Dittrich, W. G. Hundley, M. Nessavier, H. F. Li, R. W. Parkey, R. M. Peshock: Measurement of absolute epicardial coronary artery flow and flow reserve using breath-hold cine phase-contrast magnetic resonance imaging. Circulation 91 (1995), 2627–2634.PubMedGoogle Scholar
  13. 13.
    Dayaniki, F., D. Grambow, O. Muzik, L. Mosca, M. Rubenfire, M. Schwaiger: Early detection of abnormal coronary flow reserve in asymptomatic men at high risk for coronary artery disease using positron emission tomography. Circulation 90 (1994), 808–817.Google Scholar
  14. 14.
    de Filippi, C. R., D. L. Willett, W. N. Irani, E. J. Eichhorn, C. E. Velasco, P. A. Grayburn: Comparison of myocardial contrast echocardiography and low-dose dobutamine stress echocardiography in predicting recovery of left ventricular function after coronary revascularization in chronic ischemic heart disease. Circulation 92 (1995), 2863–2868.Google Scholar
  15. 15.
    Dellsperger, K., M. L. Marcus: Effects of left ventricular hypertrophy on the coronary circulation. Amer. J. Cardiol. 65 (1990), 1504–1510.PubMedCrossRefGoogle Scholar
  16. 16.
    Dittrich, H. C., G. L. Bales, T. Kuvelas, R. M. Hunt, B. A. McFerran, Y. Greener: Myocardial contrast echocardiography in experimental coronary artery occlusion with a new intravenously administered contrast agent. J. Amer. Soc. Echocardiogr. 8 (1995), 465–474.CrossRefGoogle Scholar
  17. 17.
    Ganz, W., R. Donoso, H. S. Marcus, J. S. Forrester, H. J. C. Swan: A new technique for measurement of cardiac output by thermodilution in man. Amer. J. Cardiol. 27 (1971), 392–403.PubMedCrossRefGoogle Scholar
  18. 18.
    Ganz, W., K. Tamura, H. S. Marcus, R. Donos, S. Yoshida, H. J. C. Swan: Measurement of coronary sinus blood flow by continuous thermodilution in man. Circulation 44 (1971), 181–195.PubMedGoogle Scholar
  19. 19.
    Gerber, K. H., C. B. Higgins: Comparative effects of ionic and nonionic contrast materials on coronary and peripheral blood flow. Invest. Radiol. 17 (1982), 292–298.PubMedCrossRefGoogle Scholar
  20. 20.
    Gerson, M. C., S. R. Thoma, R. L. van Heertum: Tomographic myocardial perfusion imaging. In: Gerson, M. C. (ed.): Cardiac nuclear medicine. McGraw-Hill, New York 1987, p. 25–52.Google Scholar
  21. 21.
    Gould, K. L., K. Lipscomb, G. W. Hamilton: Physiologic basis for assessing critical coronary stenosis: Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Amer. J. Cardiol. 33 (1974), 87–94.PubMedCrossRefGoogle Scholar
  22. 22.
    Gould, K. L., R. Kirkeeide, M. Buchi: Coronary flow reserve as a physiologic measure of stenosis severity. Part I. Relative and absolute coronary flow reserve during changing aortic pressure. Part II. Determination from angiographic stenosis dimensions under standardized conditions. J. Amer. Coll. Cardiol. 15 (1990). 459–474.Google Scholar
  23. 23.
    Grayburn, P. A., J. M. Erickson, J. Escobar, L. Womack, C. E. Velasco: Peripheral intravenous myocardial contrast echocardiography using a 2% dodecafluoropentane, emulsion: Identification of myocardial risk area and infarct size in the canine model of ischemia. J. Amer. Coll. Cardiol. 26 (1995), 1340–1347.CrossRefGoogle Scholar
  24. 24.
    Hamilton, W. F., J. W. Moore, J. M. Kinsman, R. G. Spurling: Studies on the circulation IV Further analysis of the injection method and of changes in hemodynamics under physiological and pathological conditions. Amer. J. Physiol. 99 (1932), 534–561.Google Scholar
  25. 25.
    Haude, M., R. Brennecke, R. Erbel, D. Jung, E. Kiefer, T. Schmidt, J. Meyer: Computerized determination of the densitometric parameter “Mean Rise Time” — a tool in the analysis of myocardial perfusion. Computers in Cardiology. IEEE Computer Society Press (1988), 19–22.Google Scholar
  26. 26.
    Haude, M., G. Caspari, D. Baumgart, R. Brennecke, J. Meyer, R. Erbel: Comparison of myocardial perfusion reserve before and after coronary balloon predilatation and after stent implantation in patients with postangioplasty restenosis. Circulation 94 (1996), 286–297.PubMedGoogle Scholar
  27. 27.
    Haude, M., G. Caspar, D. Baumgart, B. Eick, F. Liu, R. Brennecke, J. Meyer, R. Erbel: Normalisierung der myokardialen Perfusionsreserve nach koronarer Stentimplantation im Gegensatz zur alleinigen Ballonangioplastie. Z. Kardiol. 85 (1996), 260–272.PubMedGoogle Scholar
  28. 28.
    Haude, M., R. Brennecke, R. Erbel, R. Renneisen, M. Lang, D. Eißner, K. Hahn. J. Meyer: Parametric assessment of myocardial perfusion by densitometric evaluation of digital subtraction coronary angiograms: A comparison with tomographic TI-201 scintigraphy results. Computers in Cardiology. IEEE Computer Society Press (1991), 141–144.Google Scholar
  29. 29.
    Hering, E.: Versuche, die Schnelligkeit des Blutlaufs und der Absonderung zu bestimmen. Z. Physiol. 3 (1829), 85–89.Google Scholar
  30. 30.
    Hess, O. M., M. J. McGillem, S. F. DeBoe, I. M. F. Pinto, K. P. Gallagher, G. B. J. Mancini: Determination of coronary flow reserve by parametric imaging. Circulation 82 (1990), 1438–1448. Comment in: Circulation 82 (1990), 1533–1535.PubMedGoogle Scholar
  31. 31.
    Hodgson, J. McB., V. LeGrand, E. R. Bates, J. Mancini, F. M. Aueron, W. O’Neill, S. B. Simon, G. J. Beauman, M. T. LeFree, R. A. Vogel: Validation in dogs of a rapid digital angiographic technique to measure relative coronary blood flow during routine cardiac catheterization. Amer. J. Cardiol. 55 (1985), 188–193.PubMedCrossRefGoogle Scholar
  32. 32.
    Houghton, J., M. Frank, A. Carr, T. von Dohlen, L. Presant: Relation among impaired coronary flow reserve, left ventricular hypertrophy and thallium perfusion defects in hypertensive patients without obstructive coronary artery disease. J. Amer. Coll. Cardiol. 15 (1990), 43–51.CrossRefGoogle Scholar
  33. 33.
    Hundley, W. G., R. A. Lange, G. D. Clarke, B. M. Meshack, J. Payne, C. Landau, R. McColl, D. E. Sayad, D. L. Willett, J. E. Willard, L. D. Hillis, R. M. Peshock: Assessment of coronary arterial flow and flow reserve in humans with magnetic resonance imaging. Circulation 93 (1995), 1502–1508.Google Scholar
  34. 34.
    Ismail, S., A. R. Jayaweera, D. M. Skyba, J. Sklenar, N. C. Goodman, S. Kaul: Integrated backscatter and digital acquisition during myocardial contrast echocardiography: Is there an advantage over conventional echocardiography for intracoronary injections? J. Amer. Soc. Echocardiogr. 8 (1995), 453–464.CrossRefGoogle Scholar
  35. 35.
    Kaul, S.: Assessment of coronary microcirculation with myocardial contrast echocardiography: current and future clinical applications. Brit. Heart J. 73 (1995), 490–495.PubMedCrossRefGoogle Scholar
  36. 36.
    Kaul, S.: A glimpse of the coronary microcirculation with myocardial contrast echocardiography. J. invest. Med. 43 (1995), 345–361.Google Scholar
  37. 37.
    Kern, M. J., T. J. Donohue, F. V. Aguirre, R. G. Bach, E. A. Caracciolo, E. Ofilli, A. J. Labovitz: Assessment of angiographically intermediate coronary artery stenosis using the Doppler wire. Amer. J. Cardiol. 71 (1993), 26D-33D.PubMedCrossRefGoogle Scholar
  38. 38.
    Kirkeeide, R., K. L. Gould, L. Parsel: Assessment of coronary stenoses by myocardial imaging during coronary vasodilation. VII. Validation of coronary flow reserve as a single integrated measure of stenosis severity accounting for all its geometric dimensions. J. Amer. Cardiol. 7 (1986), 103–113.CrossRefGoogle Scholar
  39. 39.
    Kowallik, P., R. Schulz, B. D. Guth, A. Schade, W. Paffhausen, R. Gross, G. Heusch: Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation 83 (1991), 974–982.PubMedGoogle Scholar
  40. 40.
    Lang, M., R. Brennecke, M. Haude, U. Renneisen, R. Erbel, J. Meyer: Improving the applicability of myocardial densitometry and parametric imaging by extended automated densogram analysis. Int. J. card. Imag. 11 (1995), 105–115.CrossRefGoogle Scholar
  41. 41.
    Marcus, M. L., D. Doty, L. Hiratzka, C. Wright, C. Eastham: Decreased coronary reserve — a mechanism for angina pectoris in patients with aortic stenosis and normal coronary arteries. New Engl. J. Med. 307 (1982), 1362–1367.PubMedCrossRefGoogle Scholar
  42. 42.
    Mayer, I. V., M. P. Lazarov, U. Utzinger, A. U. Freiburghaus, O. M. Hess: Sonicated X-ray contrast agents for quantitative myocardial contrast echocardiography — a critical approach. Heart Vessels 10 (1995), 96–105.PubMedCrossRefGoogle Scholar
  43. 43.
    Meier, P., K. L. Zierler: On the theory of the indicator dilution method for measurement of blood flow and volume. J. Appl. Physiol. 6 (1954), 731–734.PubMedGoogle Scholar
  44. 44.
    Miller, D. D., H. W. Strauss: Radionuclides for cardiac imaging. In: Miller, D. (ed.), F. J. Burns, J. B. Gill, T. D. Ruddy (assoc eds.): Clinical cardiac imaging. McGraw-Hill, New York 1988, p. 3–25.Google Scholar
  45. 45.
    Moore, J. W., J. M. Kinsman, W. F. Hamilton, G. R. Spurling: Studies on the circulation. II. Cardiac output determinations: comparison of the injection method with the direct Fick procedure. Amer. J. Physiol. 89 (1920), 331–348.Google Scholar
  46. 46.
    Nissen, S. E., J. C. Gurley: Assessment of the functional significance of coronary stenoses. Is digital angiography the answer? Circulation 81 (1990), 1431–1435.PubMedGoogle Scholar
  47. 47.
    Pijls, N. H. J., G. J. H. Uijen, A. Hoevelaken, T. Pijnenburg, K. Van Leeuwen, J. H. Fast, J. L. Bos, W. R. M. Aengevaeren, T. van der Werf: Mean transit time for videodensitometric assessment of myocardial perfusion and the concept of maximal flow ratio. A validation study in the intact dog and a pilot study in man. Int. J. card. Imag. 5 (1990), 191–202.CrossRefGoogle Scholar
  48. 48.
    Pijls, N. H. J. H. S. Bos, G. J. H. Uijen, T. Van der Werf: Is ionic isotonic iohexol the contrast agent of choice for quantitative myocardial videodensitometry? Int. J. card. Imag. 3 (1988), 117–126.CrossRefGoogle Scholar
  49. 49.
    Pijls, N. H., W. R. Aengevaeren, G. J. Uijen, A. Hoevelaken, T. Pijneburg, K. van Leeuwen, T. van der Werf: Concept of maximal flow ratio for immediate evaluation of percutaneous transluminal coronary angioplasty result, by videodensitometry. Circulation 83 (1991), 854–865.PubMedGoogle Scholar
  50. 50.
    Pijls, N. H., G. J. Uijen, T. Pijnenburg, K. van Leeuwen, W. R. Aengevaeren, J. D. Barth, J. den Arend, A. Hoevelaken, T. van der Werf: Reproductibility of mean transit time for maximal myocardial flow assessment by videodensitometry. Int. J. card. Imag. 6 (1990–91), 102–108.CrossRefGoogle Scholar
  51. 51.
    Rahimtoola, S. H., H. J. C. Swan: Calculation of cardiac output from indicator dilution curves in the presence of mitral regurgitation. Circulation 31 (1965), 711–722.PubMedGoogle Scholar
  52. 52.
    Rentrop, K. P., M. Cohen, H. Blanke, R. A. Phillips: Changes in collateral channel filling immediately after controlled coronary artery occlusion by an angioplasty balloon in human subjects. J. Amer. Coll. Cardiol. 5 (1985), 587–592.CrossRefGoogle Scholar
  53. 53.
    Robb, R. A., E. H. Wood, E. L. Ritman, S. A. Johnson, R. E. Sturm, J. F. Greenleaf, B. K. Gilbert, P. A. Chevalier Three dimensional reconstruction and display of the working canine heart and lungs by multiplanar x-ray scanning videodensitometry. Computers in Cardiology. IEEE Computers Society Press 1974, p. 151–163.Google Scholar
  54. 54.
    Rossen, J., M. Winniford: Effect of increases in heart rate and arterial pressure on coronary flow reserve in humans. J. Amer. Coll. Cardiol. 21 (1993), 343–348.CrossRefGoogle Scholar
  55. 55.
    Rovai, D., A. N. DeMaria, A. L’Abbate: Myocardial contrast echo effect: The dilemma of coronary blood flow and volume. J. Amer. Coll. Cardiol. 26 (1995), 12–17.CrossRefGoogle Scholar
  56. 56.
    Rutishauser, W., G. Noseda, W. D. Bussmann, B. Preter Blood flow measurement through single coronary arteries by roentgen densitometry. Part II: Right coronary artery flow in conscious man. Amer. J. Roentgenol. 109 (1970), 21–24.PubMedGoogle Scholar
  57. 57.
    Rutishauser, W., H. Simon, J. P. Stucky, N. Schad, G. Noseda. J. Wellauer: Evaluation of roentgen cinedensitometry for flow measurement in models and in the intact circulation. Circulation 36 (1967), 951–963.PubMedGoogle Scholar
  58. 58.
    Rutishauser, W., W. D. Bussmann, G. Noseda, W. Meier, JJ. Wellauer: Blood flow measurement through single coronary arteries by roentgen densitometry. part I: A comparison of flow measured by a radiologic technique applicable in the intact organism and by electromagnetic flowmeter. Amer. J. Roentgenol. 109 (1970), 12–20.PubMedGoogle Scholar
  59. 59.
    Schmermund, A., M. Haude, C. Sehnert, K. Altmaier, D. Baumgart, G. Görge, R. Seibel, D. Grönemeyer, R. Erbel: Nichtinvasive Prüfung der Durchgängigkeit coronarer Gefäßstützen mittels elektronenstrahltomographischer Schichtbilder mit Kontrastmittelapplikation. Z. Kardiol. 84 (1995), 892–897.PubMedGoogle Scholar
  60. 60.
    Schraeder R., D., Baller, A. Hoeft, I. Korb, G. Wolpers, G. Hellige: Reduced side effects of low osmolality nonionic contrast media in coronary arteriography. In: Thonzor, V., E. Zeitler (eds.): Contrast media in urography, angiography and computerized tomography. Thieme, Stuttgart-New York 1983, p. 67–77.Google Scholar
  61. 61.
    Shepherd, F. L., I. M. Higga, D. I. Glancy: Comparison of left ventricular and pulmonary arterial injection sites in determination of cardiac output by the indicator dilution technique. Chest 62 (1972), 175–179.PubMedCrossRefGoogle Scholar
  62. 62.
    Sibley, D. H., H. D. Millar, C. J. Hartley, P. L. Whitlow: Subselective measurement of coronary blood flow velocity using a steerable Doppler catheter. J. Amer. Coll. Cardiol. 8 (1986), 1332–1340.CrossRefGoogle Scholar
  63. 63.
    Simon, R., G. Herrmann, I. Amende: Comparison of three different principles in the assessment of coronary flow reserve from digital angiograms. Int. J. card. Imag. 5 (1990), 203–212.CrossRefGoogle Scholar
  64. 64.
    Simon, R., M. Koch, G. Hermann, I. Amende, P. R. Lichtlen: Direct effects of an ionic nonionic contrast agent on the coronary circulation in man. Proc. Xth World Congress Cardiology (1986), p. 294.Google Scholar
  65. 65.
    Spiller, P., F. K. Schmiel, B. Politz, M. Block, U. Fermor, W. Hackbarth, J. Jehle, R. Körfer, H. Pannek: Measurement of systolic and diastolic flow rates in the coronary artery system by x-ray videodensitometry. Circulation 68 (1983), 337–347.PubMedGoogle Scholar
  66. 66.
    Stewart, G. N.: Researches on the circulation time in organs and on the influences which affect it. J. Physiol. 15 (1893), 1–62.PubMedGoogle Scholar
  67. 67.
    Stewart, G. N.: Researches on the circulation time in organs and on the influences which affect it. IV. The output of the heart. J. Physiol. 22 (1889), 159–183.Google Scholar
  68. 68.
    Stewart, G. N.: The output of the heart in dogs. Amer. J. Physiol. 57 (1921), 21–47.Google Scholar
  69. 69.
    Stewart, G. N.: The pulmonary circulation time, the quantity of blood in the lungs and the output of the heart. Amer. J. Physiol. 57 (1921), 27–47.Google Scholar
  70. 70.
    Strauer, B.: Ventricular function and coronary hemodynamics in hypertensive heart disease. Amer. J. Cardiol. 44 (1979), 999–1006.PubMedCrossRefGoogle Scholar
  71. 71.
    TIMI Study Group: The thrombolysis in myocardial infarction (TIMI) trial: Phase I findings. New Engl. J. Med. 312 (1985), 932–936.Google Scholar
  72. 72.
    Van der Werf, T.: De thermodilutiemethoden. In: van der Werf, T. (ed.): Directe en indirecte stroommeting in het hart en de grote bloedvaten. von Gorcum & Co, Assen 1965, p. 130–139.Google Scholar
  73. 73.
    Van der Werf, T., R. M. Heethaar, H. Steghuis, F. L. Meijler: The concept of apparent cardiac arrest as a prerequisite for coronary digital subtraction angiography. J. Amer. Coll. Cardiol. 4 (1984), 239–244.CrossRefGoogle Scholar
  74. 74.
    Vassalli, G., O. M. Hess, O. N. Krogmann, E. Oechslin, J. Grimm, Z. Jiang, H. P. Krayenbuehl: Is atrial pacing needed for determination of coronary flow reserve by parametric, imaging? Amer. J. Cardiol. 71 (1993), 415–419.PubMedCrossRefGoogle Scholar
  75. 75.
    Wilson, R. F., K. Wyche, B. V. Christensen, D. D. Laxson: Effects of adenosine on human coronary arterial circulation. Circulation 82 (1990), 1595–1606.PubMedGoogle Scholar
  76. 76.
    Wilson, R. F., D. E. Laughlin, P. H. Ackell, W. M. Chilian, M. D. Holida, C. J. Hartley, M. L. Armstrong, M. L. Marcus, C. W. White: Transluminal subselective measurement of coronary artery blood flow velocity and vasodilator reserve in man. Circulation 72 (1985), 82–89.PubMedGoogle Scholar

Copyright information

© Urban & Vogel 1997

Authors and Affiliations

  • M. Haude
    • 1
  • G. Caspari
    • 1
  • D. Baumgart
    • 1
  • P. Spiller
    • 2
  • G. Heusch
    • 3
  • R. Erbel
    • 1
  1. 1.Abteilung für Kardiologie, Zentrum Innere MedizinUniversität-GHS EssenEssen
  2. 2.Medizinische AbteilungAllgemeines Krankenhaus Barmbek der Freien und Hansestadt HamburgHamburgDeutschland
  3. 3.Abteilung für Pathophysiologie, Zentrum Innere MedizinUniversität-GHS EssenEssenDeutschland

Personalised recommendations