, Volume 40, Issue 8, pp 278–284 | Cite as

Richtwerte für die Innenraumluft: Dichlormethan

  • J. Witten
  • H. Sagunski
  • B. Wildeboer


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    World Health Organization, Regional Office for Europe, Copenhagen: Air Quality Guidelines for Europe. Dichloromethane. WHO Regional Publications, European Series No23 (1987) 81–90.Google Scholar
  2. [2]
    Mitteilung des Verbandes der Chemischen Industrie e.V., Frankfurt. Daten aus Angaben des Statistischen Bundesamtes 1996.Google Scholar
  3. [3]
    IPCS: Enviromental Health Criteria 164. Methylene Chloride (Second Edition). World Health Organization. Genf (1996).Google Scholar
  4. [4]
    Dichlormethan. Unterausschuß für Wirkungsfragen des Länderausschusses für Immissionsschutz. Ministerium für Umwelt, Raumordnung und Landwirtschaft des Landes Nordrhein-Westfalen (Hrsg.) 1995.Google Scholar
  5. [5]
    Beratergremium für umweltrelevante Altstoffe: Dichlormethan. Weinheim: VCH Verlag 1986.Google Scholar
  6. [6]
    Beck, E. G., et al.: Leichtflüchtige organische Verbindungen in der Luft von Innenräumen. Hygiene-Institut, Medizinisches Zentrum für Ökotoxikologie der Justus-Liebig-Universität Gießen (1992).Google Scholar
  7. [7]
    Otson, R., Williams, D. T., and Bothwell, P. D.: Dichloromethane levels in air after application of paint removers. Am. Ind. Hyg. Assoc. J.42 (1981) 56.Google Scholar
  8. [8]
    Arlien-Søborg, P.: Solvent neurotoxicity. Methylenchlorid. CRC Press, USA. (1992) 227–246.Google Scholar
  9. [9]
    Gesundheits- und Umweltamt Eimsbüttel: Schreiben an die Gesundheitsbehörde vom 23. 2. 1989.Google Scholar
  10. [10]
    Gerritsen, W. B., and Buschmann, C. H.: Phosgene poisoning caused by use of chemical paint removers containing methylene chloride in ill-ventilated rooms heated by kerosene stoves. Br. J. Ind. Med.17 (1960) 187–189.PubMedGoogle Scholar
  11. [11]
    English, J. M.: A case of probable phosgene poisoning. Br. Med. J.1 (1964) 38.PubMedCrossRefGoogle Scholar
  12. [12]
    Di Vincenzo, G. D., and Kaplan, C. J.: Uptake, metabolism and elimination of methylene chloride vapor by humans. Toxicol. Appl. Pharmacol.59 (1981) 130–140.CrossRefGoogle Scholar
  13. [13]
    Di Vincenzo, G. D., Yanno, F. J., and Astill, B. D.: Human and canine exposure to methylene chloride vapor. Am. Ind. Hyg. Assoc. J.33 (1972) 125–135.Google Scholar
  14. [14]
    Åstrand, I., Övrum, P., and Carlsson, A.: Exposure to methylene chloride. I. Its concentration in alveolar air and blood during rest and exercise and its metabolism. Scand. J. Work Environ. Health1 (1975) 78–94.PubMedGoogle Scholar
  15. [15]
    Engström, J., and Bjurström, R.: Expousre to methylene chloride: Content in subcutaneous adipose tissue. Scand. J. Work Environ. Health3 (1977) 215–224.PubMedGoogle Scholar
  16. [16]
    Stewart, R. D., and Dodd, H. C.: Absorption of carbon tetrachloride, trichloroethylene, tetrachloroethylene, methylene chloride, and 1,1,1-trichloroethane through the human skin. Am. Ind. Hyg. Assoc. J.25 (1964) 439–446.PubMedGoogle Scholar
  17. [17]
    Angelo, M. J., Pritchard, A. B., Hawkins, D. R., Waller, A. R., and Roberts, A.: The pharmacokinetics of dichloromethane. II. Disposition in Fischer 344 rats following intravenous and oral administration. Food Chem. Toxicol.24 (1986) 975–980.PubMedCrossRefGoogle Scholar
  18. [18]
    Pankow, D, and Jagielki, F.: Effects of methanol or modifications of the hepatic glutathione concentration on the metabolism of dichloromethane to carbon monoxide in rats. Hum. Exp. Toxicol,12, 3 (1992) 227–231.CrossRefGoogle Scholar
  19. [19]
    Stewart, R. D., Fisher, T. N., Hosko, M. J., Peterson, J. E., Baretta, E. D., and Dodd, H. C.: Experimental human exposure to methylene chloride. Arch. Environ. Health25 (1972) 342–348.PubMedGoogle Scholar
  20. [20]
    Guengerich, F. P., Shimada, T., Raney, K.D., Yun, C. H., Meyer, D. J., Ketterer, B., Harris, T. M., Groopman, J. D., and Kadlubar, F. F.: Elucidation of catalytic specificities of human cytochrome P450 and glutathione-S-transferase enzymes and relevance to molecular epidemiology. Environ. Health Perspect.98 (1992) 75–80.PubMedCrossRefGoogle Scholar
  21. [21]
    Kubic, V. L., and Anders, M. W.: Metabolism of dihalomethanes to carbon monoxide. II. In vitro studies. Drug Metab. Dispos.3 (1975) 104–112.PubMedGoogle Scholar
  22. [22]
    Pankow, D., Dretschner, S., and Weise, M.: Effect of pyrazole on dichlormethane metabolism to carbon monoxide. Recent Developments in Toxicology: Trends, Methods and Problems. Arch. Toxicol.14 (Suppl.) (1991) 246–248.Google Scholar
  23. [23]
    McKenna, M. J., Saunders, J. H., and Boeckler, W. H.: The pharmacokinetics of inhaled methylene chloride in human volunteers. Toxicol. Appl. Pharmacol. Abstr.59 (1980); zitiert in [3].Google Scholar
  24. [24]
    Ahmed, A. E., and Anders, M. W.: Metabolism of dihalomethanes to formaldehyde and inorganic chloride II. Studies on the mechanism of the reaction. Biochem. Pharmacol.27 (1978) 2021–2025.PubMedCrossRefGoogle Scholar
  25. [25]
    Meyer, D. J., Coles, B., Pemble, S. E., Gilmore, K. S., Fraser, G. M., and Kitterer, B.: Theta, a new class of gluthathione transferases purified from rat and man. Biochem. J.274 (1991) 409–414.PubMedGoogle Scholar
  26. [26]
    Green, T., Provan, W. M., Collinge, D. C., and Guest, A. E.: Molecular interactions of inhaled methylene chloride in rats and mice. Toxicol. Appl. Pharmacol.93 (1988) 1–10.PubMedCrossRefGoogle Scholar
  27. [27]
    Bogaards, J. J. P., Van Ommen, B., and Bladeren, P. J.: Individual differences in the in vitro conjugation of methylene chloride with glutathione by cytosolic glutathione-S-transferase in 22 human liver samples. Biochem. Pharmacol.45 (1993) 2166–2169.PubMedCrossRefGoogle Scholar
  28. [28]
    Reitz, R. H., Mendrela, A. L., and Guengerich, F. P.: In vitro metabolism of methylene chloride in human and animal tissues: use of physiologically based pharmacokinetic models. Toxicol. Appl. Pharmacol.97 (1989) 230–246.PubMedCrossRefGoogle Scholar
  29. [29]
    Hallier, E., Laughof, T., Dannappel, D., Leutbecher, M., Schröder, K., Goergeus, H. W., Müller, A., and Bolt, H. M.: Polymorphism of glutathione conjugation of methylbromide, ethylene oxide and dichloromethane in human blood: Influence of the induction of sister chromatid exchanges (SCE) in lymphocytes. Arch. Toxicol.67 (1993) 173–178.PubMedCrossRefGoogle Scholar
  30. [30]
    Schröder, K. R., Hallier, E., Peter, N., and Bolt, H. M.: Dissociation of a new glutathione-S-transferase activity in human erythrocytes. Biochem. Pharmacol.43 (1992) 1671–1674.PubMedCrossRefGoogle Scholar
  31. [31]
    Stewart, R. D., and Hake, C. L.: Paint-remover hazard. J. Am. Med. Assoc.235 (1976) 398–401.CrossRefGoogle Scholar
  32. [32]
    Ratney, R. S., Wegman, D. H., and Elkins, H. B.: In vivo conversion of methylene chloride to carbon monoxide. Arch. Environ. Health28 (1974) 223.PubMedGoogle Scholar
  33. [33]
    Putz, V. R., Johnson, B. L., and Setzer, J. V.: A comparative study of the effects of carbon monoxide and methylene chloride on human performance. J. Environ. Pathol. Toxicol.2 (1976) 97–112.Google Scholar
  34. [34]
    Winneke, G.: Acute behavioural effects of exposure to some organic solvents — psychophysiological aspects. Acta Neurol. Scand. 66 Suppl.92 (1982) 117.Google Scholar
  35. [35]
    Gamberale, F., Annwall, G., and Hultengren, M.: Exposure to methylene chloride. II. Psychological functions. Scand. J. Work Environ. Health1 (1975) 95.PubMedGoogle Scholar
  36. [36]
    Fodor, G. R., and Winneke, G.: Nervous system disturbances in men and animals experimentally exposed to industrial solvent vapors. In: England, H. M. (ed.): Proceedings of the 2nd International Clean Air Congress. New York, Academic Press (1971) 238–243.Google Scholar
  37. [37]
    Barrowcliff, D. F., and Knell, A. J.: Cerebral damage due to endogenous chronic carbon monoxide poisoning caused by exposure to methylene chloride. J. Soc. Occup. Med.29 (1979) 12–14.PubMedCrossRefGoogle Scholar
  38. [38]
    Weiss, G.: Toxic encephalosis in occupational contact with methylene chloride. Zbl. Arbeitsmed. Arbeitsschutz17 (1967) 282–285.Google Scholar
  39. [39]
    Cherry, N., Venables, H., Waldron, H. A., and Wells, G. G.: Some observations on workers exposed to methylene chloride. Br. J. Ind. Med.38 (1981) 351–355.PubMedGoogle Scholar
  40. [40]
    Cherry, N., Venables H., and Waldron, H. A.: The acute behavioural effects of solvent exposure. J. Soc. Occup. Med.33 (1983) 13.PubMedCrossRefGoogle Scholar
  41. [41]
    Lash, A. A., Becker, C. E., So, Y., and Shore, M.: Neurotoxic effects of methylene chloride. Br. J. Ind. Med.48 (1991) 418–426.PubMedGoogle Scholar
  42. [42]
    Soden, K. J.: An evaluation of chronic methylene chloride exposure. J. Occup. Med.35 (1993) 282–286.PubMedGoogle Scholar
  43. [43]
    Mattsson, J. L., Albee, R. R., and Eisenbrandt, D. L.: Neurotoxicologic evaluation of rats after 13 weeks of inhalation exposure to dichloromethane or carbon monoxide. Pharmacol. Biochem. Behav.36 (1990) 671–681.PubMedCrossRefGoogle Scholar
  44. [44]
    Briving, C., Hamberger, A., Kjellstrand, P., Rosengren, L., Karlsson, J. E., and Haglid, K. G.: Chronic effects of dichloromethane on amino acids, glutathione and phsophoethanolamine in gerbil brain. Scand. J. Work Environ. Health12 (1986) 216–220.PubMedGoogle Scholar
  45. [45]
    Ott, M. G., Skory, L. K., Holder, B. B., Bronson, J. M., and Williams, P. R.: Health evaluation of employees occupationally exposed to methylene chloride. Scand. J. Work Environ. Health9 (Suppl 1) (1983) 1–38.PubMedGoogle Scholar
  46. [46]
    Lanes, S. F., Cohen, A., Rothman, K. J., Dreyer, N. A., and Soden, K. J.: Mortality of cellulose fiber production workers. Scand. J. Work Environ. Health16 (1990) 247–251.PubMedGoogle Scholar
  47. [47]
    Belej, M. A., Smith, G. A., and Aviado, D. M.: Toxicity of aerosol propellants in the respiratory and circulatory system. IV. Cardiotoxicity in the monkey. Toxicology2 (1980) 381–395.CrossRefGoogle Scholar
  48. [48]
    Taylor, G. J., Drew, R. J., Lores, E. M., and Clemmer, T. A.: Cardiac depression by haloalkane propellants, solvents, and inhalation anesthetics in rabbits. Toxicol. Appl. Pharmacol.38 (1976) 379–387.PubMedCrossRefGoogle Scholar
  49. [49]
    Aviado, D. M.: Effects of fluorocarbons, chlorinated solvents and inosine on the cardiopulmonary system. Environ. Health Perspect.26 (1978) 207–215.PubMedCrossRefGoogle Scholar
  50. [50]
    Taskinen, H., Lindbohm, M.-L., and Hemminki, K.: Spontaneous abortions among women working in the pharmaceutical industry. Br. J. Ind. Med.43 (1986) 199–205.PubMedGoogle Scholar
  51. [51]
    Schwetz, B. A., Leong, B. K. J., and Gehring, P. J.: The effect of maternally inhaled trichloroethylene, perchloroethylene, methyl chloroform, and methylene chloride on embryonal and fetal development in mice and rats. Toxicol. Appl. Pharmacol.32 (1975) 84–96.PubMedCrossRefGoogle Scholar
  52. [52]
    Bornschein, R. L., Hastings, L., and Manson, J. M.: Behavioural toxicity in the offspring of rats following maternal exposure to dichloromethane. Toxicol. Appl. Pharmacol.52 (1980) 29–37.PubMedCrossRefGoogle Scholar
  53. [53]
    Nitschke, K. D., Eisenbrandt, D. L., Lomax, L. G., and Rao, K. S.: Methylene chloride: Two generation inhalation reproductive study in rats. Fundam. Appl. Toxicol.11 (1988) 60–67.PubMedCrossRefGoogle Scholar
  54. [54]
    Hearne, F. T., Grose, F., Pifer, W. J., Friedlander, B. R., and Raleigh, R. L.: Methylene chloride mortality study: Dose-response characterization and animal model comparison. J. Occup. Med.29 (1987) 217–228.PubMedGoogle Scholar
  55. [55]
    Mirer, F. E., Silverstein, M., and Park, R.: Methylene chloride and cancer of the pancreas [letter]. J. Occup. Med.30 (1988) 475–476.PubMedCrossRefGoogle Scholar
  56. [56]
    Hearne, F. T., Pifer, J. W., and Grose, F.: Absence of adverse mortality effects in workers exposed to methylene chloride. An update. J. Occup. Med.32 (1988) 234–240.CrossRefGoogle Scholar
  57. [57]
    Lanes, S. F., Rothman, K. G., Dreyer, N. A., and Soden, K. J.: Mortality update of cellulose fiber production workers. Scand. J. Work Environ. Health19 (6) (1988) 426–428.Google Scholar
  58. [58]
    Heineman, E. F., Cocco, P., Gomez, M. R., Dosemeci, M., Stewart, P. A., Hayes, R. B., Zahim, S. H., Thomas, T. L., and Balir, A.: Occupational exposure to chlorinated aliphatic hydrocarbons and risk of astrocytic brain cancer. Am. J. Ind. Med.26 (2) (1994) 155–169.PubMedCrossRefGoogle Scholar
  59. [59]
    Mennear, J. H., McConnell, E. E., Huff, J. E., Renne, R. A., and Giddens, E.: Inhalation toxicology and carcinogenesis studies of methylene chloride (dichloromethane) in F344/N rats and B6C3F1 mice. Ann. NY Acad. Sci.534 (1988) 343–351.PubMedCrossRefGoogle Scholar
  60. [60]
    Kari, F. W., Foley, J. F., Seilkop, S. K., Maronpot, R. R., and Anderson, M. W.: Effect of varying exposure regimens on methylene chloride induced lung and liver tumors in female B6C3F1 mice. Carcinogenesis14 (5) (1993) 819–826.PubMedCrossRefGoogle Scholar
  61. [61]
    Burek, J. D., Nitschke, K. D., Bell, T. J., Wackerle, D. L., Childs, R. C., Beyer, J. E., Dittenber, D. A., Rampy, L. W., and McKenna, M. J.: Methylene chloride: A two-year inhalation toxicity and oncogenicity study in rats and hamsters. Fundam. Appl. Toxicol.4 (1984) 30–47.PubMedCrossRefGoogle Scholar
  62. [62]
    Nitschke, K. D., Burek, J. D., Bell, T. J., Kociba, R. J., Rampy, L. W., and McKenna, M. J.: Methylene chloride: A 2-year inhalation toxicity and oncogenicity study in rats. Fundam. Appl. Toxicol.11 (1988) 48–59.PubMedCrossRefGoogle Scholar
  63. [63]
    Andrae, U., and Wolff, T.: Dichloromethane is not gentoxic in isolated rat hepatocytes. Arch. Toxicol.52 (1983) 287–290.PubMedCrossRefGoogle Scholar
  64. [64]
    Thilagar, A. K., Back, A. M., Kirby, P. E., Kumaroo, P. V., Pant, K. J., Clarke, J. J., Knight, R., and Haworth, S. R.: Evaluation of dichloromethane in short-term in vitro genetic toxicity assays. Environ. Mutagen.6 (1984) 418–419.Google Scholar
  65. [65]
    Anderson, B. E., Zeiger, E., Shelby, M. D., Resnick, M. A., Gulati, D. K., Ivett, J. L., and Lovrday, K. S.: Chromosome aberration and sister chromatid exchange test results with 42 chemicals. Environ. Mol. Mutagen.16 (1990) 55–137.PubMedCrossRefGoogle Scholar
  66. [66]
    Pemble, S., Schröder, K. R., Spencer, S. R., Meyer, D. J., Hallier, E., Bolt, H. M., Ketterer, B., and Taylor, J. B.: Human glutathion S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem. J.300 (1994) 271–276.PubMedGoogle Scholar
  67. [67]
    Casanova, M., Deyo, D. F., and Heck, H.: Dichloromethane (methylene chloride): Metabolism to formaldehyde and formation of DNA-protein cross-links in B6C3F1 mice and Syrian golden hamsters. Toxicol. Appl. Pharmacol.114 (1992) 162–165.PubMedCrossRefGoogle Scholar
  68. [68]
    Leonardos, G. L., Kendall, D., and Barnard, J.: Odor threshold determination of 53 odorant chemicals. J. Air Poll. Control Assoc.19 (1969) 91–95.Google Scholar
  69. [69]
    Roth, R. P., Drew, R. T., Lo, R. J., and Foets, J. R.: Dichlormethane inhalation, carboxyhaemoglobin concentrations and drug metabolizing enzymes in rabbits. Toxicol. Appl. Pharmacol.33 (1975) 427–437.PubMedCrossRefGoogle Scholar
  70. [70]
    Tham, R., Bunnfors, I., Eriksson, B., Larsby, B., Lindgren, S., and Ödkvist, L. M.: Vestibular-ocular disturbances in rats exposed to organic solvents. Act. Pharmacol. Toxicol.54 (1984) 54–63.Google Scholar
  71. [71]
    Andersen, M. E., and Krishnan, K.: Physiologically based pharmacokinetics and cancer risk assessment. Environ. Health Persp.102 Suppl. 1 (1994) 103–108.Google Scholar
  72. [72]
    Reitz, R. H., Mendrela, A. L., Park, C. N., Andersen, M. E., and Guengerich, F. P.: Incorporation of in vitro enzyme data into the physiologically based pharmacokinetic model for methylene chloride: implications for risk assessment. Toxicol. Lett.43 (1988) 97–116.PubMedCrossRefGoogle Scholar
  73. [73]
    Dichlormethan. Deutsche Forschungsgemeinschaft. Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. Biologische Arbeitsstoff-Toleranzwerte. Arbeitsmedizinisch-toxikologische Begründungen. Weinheim: VCH Verlag, 1990.Google Scholar
  74. [74]
    Deutsche Forschungsgemeinschaft — Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. MAK- und BAT-Werte-Liste 1996. Mitteilung 32. Weinheim: VCH Verlag, 1990.Google Scholar
  75. [75]
    Technische Regeln für Gefahrstoffe — TRGS 900. BArbBl. 10/1996 S. 106–128.Google Scholar
  76. [76]
    Technische Regeln für Gefahrstoffe — TRGS 905. BArbBl. 4/1995 S. 70; BArbBl. 10/1995 S. 46.Google Scholar
  77. [77]
    Richtwerte für die Innenraumluft: Basisschema. Ad-hoc-Arbeitsgruppe aus Mitgliedern der Innenraumlufthygiene-Kommission (IRK) des Umweltbundesamtes und des Ausschusses für Umwelthygiene der AGLMB. Bundesgesundhbl.39 (1996) 422–426.Google Scholar

Copyright information

© Springer Medizin Verlag 1997

Authors and Affiliations

  • J. Witten
    • 1
  • H. Sagunski
    • 2
  • B. Wildeboer
    • 2
  1. 1.Hessisches Ministerium für Umwelt, Energie, Jugend, Familie und GesundheitWiesbaden
  2. 2.Behörde für Arbeit, Gesundheit und SozialesReferat Toxikologische BewertungenHamburg

Personalised recommendations