Senckenbergiana lethaea

, Volume 88, Issue 1, pp 183–193 | Cite as

Developmental trajectories in geographically separated populations of non-marine ostracods: morphometric applications for palaeoecological studies

  • Dan L. Danielopol
  • Angel Baltanás
  • Tadeusz Namiotko
  • Walter Geiger
  • Maria Pichler
  • Montserrat Reina
  • Gertraud Roidmayr


Developmental trajectories refer here to patterns of size and shape changes in ostracod valves during the sequence of post-embryonic growth stages. The information obtained from the study of such patterns has significant applications for evolutionary biology and/or (palaeo) ecology. Using geometric morphometrics methods, we describe the developmental trajectories of three ostracod species with valves retrieved from the sediments of lakes Mondsee (Austria), Hańcza (Poland) and Iseo (Italy). Size and shape data result in distinct developmental trajectories. Ontogenetic changes agree with predictions of Prizbram’s and Brooks’ laws. Patterns of valve shape change provide information which might be of use to the taxonomic definition of evolutionary lineages and to the development of studies of allometry and heterochrony in non-marine ostracods.

Key words

Ostracoda developmental trajectories comparative morphology ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Absolon, A. (1978): Die GattungCandona (Ostracoda) im Quartär von Europa. — Rada Matematicky a Prirodnich Ved,88: 1–72.Google Scholar
  2. Alberch, P., Gould, S.J., Oster, G.F. &Wake, D.B. (1979): Size and shape in ontogeny and phylogeny. — Paleobiology,5: 296–317.Google Scholar
  3. Alcorlo, P.;Baltanás, A. &Arqueros, L. (1999): Intra-clonal shape variability in the non-marine ostracod Heterocypris barbara (Crustacea, Ostracoda). — Geosound (Yerbilimleri),35: 1–11.Google Scholar
  4. Baltanás, A., Otero, M., Arqueros, L., Rossetti, G.P. &Rossi, V. (2000): Ontogenetic changes in the carapace shape of the non-marine ostracodEucypris virens (Jurine). — Hydrobiologia,419: 65–72.CrossRefGoogle Scholar
  5. Baltanás, A., Brauneis, W, Danielopol, D.L. &Linhart, J. (2003): Morphometric methods for applied ostracodology: tools for outline analysis of nonmarine ostracods. — InPark, L.E. &Smith, A.J. (Eds): Bridging the gap, trends in the ostracode biological and geological sciences; The Paleontological Society Papers,9: 101–118.Google Scholar
  6. Bookstein, F.L. (1991): Morphometric tools for landmark data: Geometry and Biology. — 1–435; New York (Cambridge University Press).Google Scholar
  7. Brauneis, W., Linhart, J., Stracke, A., Danielopol, D.L., Neubauer, W. &Baltanás, A. (2006): — Morphomatica (Version 1.6.0) User Manual/Tutorial. — 1–82; Mondsee (Limnological Institute, Austrian Academy of Sciences), [download at:]Google Scholar
  8. Brooks, W.K. (1886): Report on the Stomatopoda dredged by H.M.S.“Challenger” during the years 1873 – 1876. — Report on the scientific results of the voyage of H.M. S.Challenger, Zoology,16: 1–116.Google Scholar
  9. Clarke, K.R. &Gorley R.N. (2006): Primer v. 6: Computer program and User Manual/Tutorial. — 1–190; Plymouth (PRIMERE Ltd., Plymouth Marine Laboratory).Google Scholar
  10. Danielopol, D.L. (1990): On the interest of the “Cytherissa” project and the present state of researches. — InDanielopol, D.L., Carbonel, P. &Colin, J.P. (Eds):Cytherissa theDrosophila of Paleolimnology, Bulletin de l’Institut de Géologie du Bassin d’Aquitaine,47: 15–26; Talence (Université de Bordeaux).Google Scholar
  11. Danielopol, D.L., Ito, E., Wansard, G., Kamiya, T., Cronin, T. &Baltanás, A. (2002): Techniques for Collection and Study of Ostracoda, p. 65–97. — In:Holmes, J.A. &Chivas, A.R. (Eds) The Ostracoda, Application in Quaternary research. American Geophysical Union, Geophysical Monograph131: 65–97.Google Scholar
  12. Dryden, I.L. &Mardia, K.V. (1998): Sratistical Shape Analysis. — 1–347; Chichester (John Wiley & Sons)Google Scholar
  13. Dyar, H.G. (1890): The number of molts of lepidopterous larvae. — Psyche,5: 420–422CrossRefGoogle Scholar
  14. Finlay, B.J., Esteban, G.F., Brown, S., Fenchel, T. &Hoef-Emden, K. (2006): Multiple cosmopolitan ecotypes within a microbial eukariote morphospecies. — Protist,157: 377–390.CrossRefGoogle Scholar
  15. Foote, M. (1995): Morphological diversification of Paleozoic crinoids. — Paleobiology,14: 387–400.Google Scholar
  16. Foster, D.W. &Kaesler, R.L. (1988) Shape analysis. Ideas from Ostracoda. — InMcKinney, M.L. (Ed.): Heterochrony in Evolution, 53–69; New York (Plenum Press).Google Scholar
  17. Fowler, G.H. (1909): The Ostracoda. Biscayan plankton collected during a cruise of H.M.S. Research, 1900. — Transactions of Linnean Society, Zoology,2nd Ser.,10: 219–336.CrossRefGoogle Scholar
  18. Geiger, W. (1990): Field and laboratory studies on the life cycle ofCytherissa lacustris (Sars) (Crustacea, Ostracoda) with special emphasis on the role of temperature. — Bulletin de l’Institut de Géologie du Bassin d’Aquitaine,47: 191–208.Google Scholar
  19. Gould, S.J. (1977): Ontogeny and Phylogeny. — I-IX, 1–501; Cambridge, Mass. (The Belnap Press).Google Scholar
  20. Grafenstein, U. von (2002): Oxygen-isotope studies of ostracods from deep lakes. — InHolmes, J.A. &Chivas, A.R. (Eds): The Ostracoda, application in Quaternary research. Geophysical Monograph,131: 249–266; Washington (American Geophysical Union).Google Scholar
  21. Heip, C. (1976): The life-cycle of Cyprideis torosa (Crustacea, Ostracoda). — Oecologia24, 229–245.CrossRefGoogle Scholar
  22. Hessland, I. (1949): Investigations of the lower Ordovician ostracods of the Siljan district, Sweden. — Bulletin of Geological Institute Uppsala,33: 97–408.Google Scholar
  23. Holmes, J.A. &Chivas, A.R. (Eds) (2002): The Ostracoda, Application in Quaternary research. Geophysical Monograph131: 1–313; Washington (American Geophysical Union).Google Scholar
  24. Hounsome, M.V. (1975): The effects of water temperature on the growth and allometry ofEucypris virens (Jurine) (Ostracoda, Crustacea). Ph.D. Thesis. — 1–220; Manchester (University of Manchester).Google Scholar
  25. Hunt, G. (2001): Mixture Model Analysis v. 1.31. Software program. — Chicago (Committee on Evolutionary Biology, University of Chicago)Google Scholar
  26. Hunt, G. (2007): Evolutionary divergence in directions of high phenotypic variance in the ostracode genusPoseidonamicus. — Evolution,61: 1560–1576.CrossRefGoogle Scholar
  27. Hunt, G. (2007): Morphology, ontogeny and phylogenetics of the genusPoseidonamicus (Ostracoda: Thaerocytherinae). — Journal of Paleontology,81: 607–631.CrossRefGoogle Scholar
  28. Hunt, G. &Chapman, R.E. (2001): Evaluating hypothesis of instar-grouping in arthropods: a maximum likelihood approach. — Paleobiology,27: 466–484.CrossRefGoogle Scholar
  29. Iepure, S., Namiotko, T. &Danielopol, D.L. (2007): Evolutionary aspects within the species groupPseudocandona eremita (Vejdovský) (Ostracoda, Candoninae). — Hydrobiologia,585: 159–180.CrossRefGoogle Scholar
  30. Irizuki, T. &Sasaki, O. (1993) Analysis of morphological changes through ontogeny: generaBaffinicythere andElofsonella (Hemicytherinae). — InMcKenzie, K.G. &Jones, P.J. (Eds): Ostracoda in the Earth and Life Sciences, 335–350; Rotterdam (A.A. Balkema)Google Scholar
  31. Kaesler, R.L. &Foster, D.W. (1988): Ontogeny ofBradleya normani (Brady): Shape analysis of landmarks. — InHanai, T., Ikeya, N. &Ishizaki, K. (Eds): Evolutionary biology of Ostracoda, 207–218. Tokyo & Amsterdam (Kodansha & Elsevier).CrossRefGoogle Scholar
  32. Kamiya, T. (1992): Heterochronic dimorphism ofLoxoconcha uranouchiensis (Ostracoda) and its implication for speciation. — Paleobiology,18: 221–236.Google Scholar
  33. Kendall, D.G. (1977): The diffusion of shape. — Advances in Applied Probability,9: 428–430.CrossRefGoogle Scholar
  34. Kesling, R.V. (1951a): The morphology of ostracod molt stages. — Illinois Biological Monographs,21: 1–126.Google Scholar
  35. Kesling, R.V. (1951b): Mechanical solution of formulas for growth rates. — Contributions from Museum of Paleontology University of Michigan,8 (10): 231–237.Google Scholar
  36. Kesling, R.V. (1952): Doubling in size of ostracod carapaces in each molt stage. — Journal of Paleontology,26: 772–780.Google Scholar
  37. Kesling, R.V. (1953): A slide rule for the determination of instars in ostracod species. — Contributions from Museum of Paleontology University of Michigan,11: 97–109.Google Scholar
  38. Kesling, R.V. &Crafts, F.C. (1962): Ontogenetic increase in Archimedean weight of the ostracodChlamydotheca unispinosa (Baird). — American Midland Naturalist,68: 149–153.CrossRefGoogle Scholar
  39. Kesling, R.V. &Takagi, R.S. (1961): Evaluation of Przibram’s law for ostracods by use of the Zeuthen Cartesian-diver weighing technique. — Contribution from Museum of Paleontology University Michigan,17: 1–58.Google Scholar
  40. Klingerberg, C.P. (1998): Heterochrony and allometry: the analysis of evolutionary change in ontogeny. — Biological Reviews,73: 79–123.CrossRefGoogle Scholar
  41. Kurata, H. (1962): Studies on the age and growth of Crustacea. — Bulletin of the Hokkaido Regional Fisheries Research Laboratory,24: 1–115.Google Scholar
  42. Lestrel, P.E. (2000): Morphometrics for the Life Sciences; — 1–261; Singapore (World Scientific).Google Scholar
  43. Lestrel, P.E. (Ed.) (1997): Fourier descriptors and their applications in Biology. — 1–466; Cambridge (Cambridge University Press).Google Scholar
  44. MacLeod, N. (1999): Generalizing and extending the eigenshape method of shape space visualization and analysis. — Paleobiology,25: 107–38.Google Scholar
  45. Majoran, S., Agrenius, S. &Kucera, M. (2000): The effect of temperature on shell size and growth rate inKrithe praetexta (Sars). — Hydrobiologia,419: 141–148.CrossRefGoogle Scholar
  46. Maness, T.R. &Kaesler, R.L. (1987): Ontogenetic changes in the carapace ofTyrrhenocythere amnicola (Sars) a hemicytherid ostracode. — The University of Kansas Paleontological Contributions,118: 1–15.Google Scholar
  47. Marín, J.A. (1984) Estudio del desarrollo de los ostrácodosEucypris aragonica y Heterocypris salina en cultivo de barro. — Limnetica,1: 345–354.Google Scholar
  48. Martens, K. (1983): Aspects of the biology ofMytilocypris henricae (Chapman) (Crustacea, Ostracoda) with particular emphasis on salinity tolerance, life history and postembrional ontogeny. — M. Sc. Thesis; 1–235; Canberra (The Australian National University).Google Scholar
  49. Martens, K. (1985): Effects of temperature and salinity on postembryonic growth inMytilocypris henricae (Chapman) (Crustacea, Ostracoda). Journal of Crustacean Biology,5: 258–272.CrossRefGoogle Scholar
  50. McGhee, G.R., Jr. (1999): Theoretical Morphology. — 1–316, New York (Columbia University Press).Google Scholar
  51. McLellan, T. &Endler, J.A. (1998): The relative success of some methods for measuring and describing the shape of complex objects. — Systematic Biology,47: 264–81.CrossRefGoogle Scholar
  52. Meisch, C. (2000): Freshwater Ostracoda of Western and Central Europe. — 1–522; Heidelberg (Spektrum Akademischer Verlg., G. Fischer).Google Scholar
  53. Mezquita, F., Olmos, V. &Oltra, R. (2000): Population ecology ofCyprideis torosa (Jones, 1850) in a hypersaline environment of the Western Mediterranean (Santa Pola, Alacant). — Ophelia,53: 119–130.Google Scholar
  54. Minati, K.,Cabral, M.C.,Pipík, R.,Danielopol, D.L.,Linhart, J. &Neubauer, W. (2008): Morphological variability among European populations ofVestalenula cylindrica (Straub) (Crustacea, Ostracoda). — Palaeogeography, Palaeoclimatology, Palaeoecology. Doi: 10.1016/j.palaeo.2007.05.027.Google Scholar
  55. Needham, A.E. (1950): The form-transformation of the abdomen of the female pea-crab,Pinnotheres pisumLeach. — Proceedings of Royal Society,B, 137: 115–136.CrossRefGoogle Scholar
  56. Neubauer, W. (2007): Measuring the difference of approximating B-spline curves with application in distinguishing Ostracoda. — MSc Thesis, Institute of Mathematics, University of Salzburg, Scholar
  57. Park, L.E. &Smith, A.J. (Eds.) (2003): Bridging the gap, Trends in the Ostracode Biological and Geological Sciences; The Paleontological Society Papers,9: 1–290; New Haven (The Paleontological Society).Google Scholar
  58. Przibram, H. (1931): Connecting laws in animal morphology. Four lectures held at the University of London. — 1–62; London (University London Press).Google Scholar
  59. Przibram, H. &Megušar, F. (1912): Wachtstummessungen anSphodromantis bioculataBurm. 1. Länge und Masse. — Achiv für Entwickungsmechanik der Organismen (Wilhelm Roux),34: 680–741.CrossRefGoogle Scholar
  60. Ranta, E. (1979): Population biology ofDarwinula stevensoni (Crustacea, Ostracoda) in an oligotrophic lake. — Annales Zoologici Fennici16, 28–35.Google Scholar
  61. Reyment, R.A. (1995): On multivariate morphometrics applied to Ostracoda. — InRiha, J. (Ed.): Ostracoda and biostratigraphy, pp. 43–48, Rotterdam (A.A. Balkema).Google Scholar
  62. Reyment, R.A., Bookstein, F.L., McKenzie, K., &Majoran, G.S. (1988). Ecophenotypic variation inMitilus pumilus (Ostracoda) from Australia, studied by canonical variate analysis and tensor biometrics. — Journal of Micropalaeontology,7: 11–20.CrossRefGoogle Scholar
  63. Reyment, R.A. &Bookstein, F.L. (1993): Infraspecific variability in shape inNeobuntonia airella: an exposition of geometric morphometry. — InMcKenzie, K.G. &Jones, P.J. (Eds.): Ostracoda in the Earth and Life Sciences: 291–314; Rotterdam (A.A. Balkema).Google Scholar
  64. Rohlf, F.J. (1990): Morphomettics. — Annual Review of Ecology and Systematics,21:299–316.CrossRefGoogle Scholar
  65. Rohlf, F.J. 2001.Tpsdig, Program version 1.43. Stony Brook (Department of Ecology and Evolution, State University of New York) [].Google Scholar
  66. Rohlf, F.J. &Archie, J.W. (1984): A comparison of Fourier methods for the description of wing shape in mosquitoes (Diptera: Culicidae). — Systematic Zoology,33:302–317.CrossRefGoogle Scholar
  67. Rudjakov, J.A. (1962): Some growth regularities of pelagic ostracods of the family Halocypridae. — Akademiya Nauk SSSR,58: 167–171.Google Scholar
  68. Schweitzer, P.N. &Lohmann, G.P. (1990): Life-history and the evolution of ontogeny in the ostracode genus Cyprideis. — Paleobiology,16: 107–125.Google Scholar
  69. Schweitzer, P.N., Kaesler, R.L. &Lohmann, G.P. (1986): Ontogeny and heterochrony in the ostracodeCapellinaCoryell from Lower Permian rocks in Kansas. — Paleobiology,12: 290–301.Google Scholar
  70. Shaver, R.H. (1953): Ontogeny and sexual dimorphism inCytherella bullata. — Journal of Paleontology,27: 471–480.Google Scholar
  71. Skosberg, T. (1920): Studies on marine ostracods. I. Cypridinids, halocyprids, and policopids. — Zoologiska Bidrag Uppsala,Suppl. 1: 1–782.Google Scholar
  72. Smith, R.J. &Martens, K. (2000): The ontogeny of the cypridid ostracodEucypris virens (Jurine, 1820) (Crustacea, Ostracoda). — Hydrobiologia,419: 31–63.CrossRefGoogle Scholar
  73. Sohn, I.G. (1950): Growth stages in fossil ostracodes. — American Journal of Sciences,248: 427–434.Google Scholar
  74. Sterelny, K. (1999): Species as ecological mosaics. — InWilson, R.A. (Ed.): Species: new interdisciplinary essays: 119–138; Cambridge, Mass. (The MIT Press).Google Scholar
  75. Zelditch, M.L., Swiderski, D.L., Sheets, H.D. &Fink, W.L. (2004): Geometric morphometrics for biologists; a Primer. — 1–443; Amsterdam (Elsevier, Academic Press).CrossRefGoogle Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2008

Authors and Affiliations

  • Dan L. Danielopol
    • 1
  • Angel Baltanás
    • 2
  • Tadeusz Namiotko
    • 3
  • Walter Geiger
    • 2
  • Maria Pichler
    • 4
  • Montserrat Reina
    • 2
  • Gertraud Roidmayr
    • 4
  1. 1.Österreichische Akademie der Wissenschaften, Kommission für die paläontologische und stratigraphische Erforschung Österreichs, c/o Institut für ErdwissenschaftenUniversität GrazGrazAustria
  2. 2.Departamento de EcologíaUniversidad Autónoma de MadridMadridSpain
  3. 3.Instytut Biologii (Katedra Genetiki)Universytet GdańskiGdańskPoland
  4. 4.Institut für LimnologieÖsterreichische Akademie der WissenschaftenMondseeAustria

Personalised recommendations