Senckenbergiana lethaea

, Volume 82, Issue 1, pp 223–240 | Cite as

Primates and engineering principles: Applications to craniodental mechanisms in ancient terrestrial predators

  • Ian Jenkins
  • Jeff J. Thomason
  • Dave B. Norman
Engineering and Constructional Morphology


Ancient terrestrial tetrapod ecosystems of the Permian Period document the expansion and diversification of the earliest carnivore guilds containing highly specialised killers. These predators were synapsids, the ancient ancestors of mammals. Determining the mode of life of fossils such as synapsids is fraught with difficulties. But developments in the past twenty years provide rigorous new approaches for ascertaining habit in extinct tetrapods. A synthetic-analytical coupling of appropriate experimental data with the hybrid numerical computer technique Finite Element Analysis (FEA) gives a robust interpretation of synapsid morphology. Applying these techniques to Late Permian predators refines our knowledge of carnivore habit and niche separation at this crucial stage in carnivore evolutionary history. The Synapsida dominated late Permian terrestrial ecosystems, and forms such as lycosuchids, scylacosaurids and gorgonopsids composed the bulk of the tetrapod predators. Their postcranial skeletons are very similar and provide few indications of ecological partitioning; synapsid skulls however show a great diversity of form.

Unlike many extinct tetrapods such as dinosaurs, synapsids are structurally closely comparable to a group of living amniotes: mammals. This is crucial as extensive experimental data on skull structure in mammals can be appropriately applied to synapsid cranial anatomy in a meaningful way. This is less so in, for example a scaled-up use of lizard skulls to interpret cranial function in theropod dinosaurs. Of particular use in this analysis of synapsid crania are the detailed experimental analyses of jaw and skull design in living primates. Stress-strain analyses of the mandible in primates allow a rigorous interpretation of jaw function in synapsids. This approach reveals some hitherto unknown aspects of the morphology and hence potential niche separation of these carnivores during the Permo-Triassic extinction event. In at least one instance, niche filling appears to have been based on a specific trophic ecotype: the gorgonopsid — moschorhinid convergence. The data is tied together by using FEA to examine stress patterns in fossil skulls. By using a synthetic-analytical approach, an interpretation of the cranial morphology of synapsid carnivores is produced of sufficient depth so that their niche separation based on predatory capability can be elucidated. Results provide insights into aspects of Permo-Triassic synapsid predator communities.

Key words

finite element analysis Gorgonopsids Primates jaw mechanics carnivory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. M. &Cruickshank, A. R. I. (1978): The biostratigraphy of the Permian and the Triassic. Part 5. A review of the classification and distribution of Permo-Triassic tetrapods. Palaeontologia Africana.21: 15–44.Google Scholar
  2. Benton, M. J. (1993): The fossil record II. Chapman & Hall. London.Google Scholar
  3. Benton, M. J,Shishkin, M. A.,Unwin, D. M. &Kurochkin, E. N. (2000): The age of dinosaurs in Russia and Mongolia. — Cambridge University Press.Google Scholar
  4. Biknevicius, A. R. &Van Valkenburgh, B. (1996): Design for Killing: Craniodental Adaptations of Predators. In:Gittleman, J. L. [ed]. Carnivore Behaviour, Ecology and Evolution Vol.2. Cornell University Press; Ithaca.Google Scholar
  5. Biknevicius, A. R., Van Valkenburgh, B. &Walker. J. (1996): Incisor size and shape: implications for feeding behaviours in saber-toothed “cats”. Journal of Vertebrate Paleontology.16 (3): 510–521.Google Scholar
  6. Briggs, D. E. G. &Crowther, P. R. (1990): Palaeobiology: a synthesis. — Blackwell Scientific Oxford.Google Scholar
  7. Broom, R. (1930): On the structure of the mammal-like reptiles of the suborder Gorgonopsidae. Philosophical Transactions Royal Society. London. B.218: 345–371.CrossRefGoogle Scholar
  8. Broom, R. (1932): The mammal-like reptiles of South Africa and the origin of mammals. — H. F. & G. Witherby. London.Google Scholar
  9. Broom, R. (1936): On the structure of the skull in the mammal-like reptiles of the suborder Therocephalia. Philosophical Transactions Royal Society. London. B.226: 1–42.CrossRefGoogle Scholar
  10. Buckland-Wright, J. C. (1971): The shock-absorbing effect of cranial sutures in certain mammals. Journal of Dental Research. Supplement to No 5. Abstract. 1168.Google Scholar
  11. Buckland-Wright, J. C. (1978): Bone structure and the patterns of force transmission in the cat skull (Felis catus): Journal of Morphology.155 (1): 35–62.CrossRefGoogle Scholar
  12. Busbey, A. B. (1995): The structural consequences of skull flattening in crocodilians. In:Thomason, J. J. [ed]. Functional Morphology in Vertebrate Paleontology. pp. 173–192. — Cambridge University Press.Google Scholar
  13. Carroll, R. L. (1988): Vertebrate Paleontology and Evolution. — W.H.Freeman and Co. New York.Google Scholar
  14. Covey, D. S. G. &Greaves, W. S. (1994): Jaw dimensions and torsion resistance during canine biting in the Carnivora. Canadian Journal of Zoology.72: 1055–1060.CrossRefGoogle Scholar
  15. Durand, J. F. (1991): A revised description of the skull of Moschorhinus (Synapsida, Therocephalia): Annals South African Museum.99 (11): 381–413.Google Scholar
  16. Feder, M. &Lauder, G. V. (1986): Predator-prey relationships: perspectives and approaches from the study of lower vertebrates. — Chicago Press.Google Scholar
  17. Gittleman, J. L. [ed]. (1989): Carnivore Behaviour, Ecology and Evolution. Vol 1. — Cornell University Press; Ithaca.Google Scholar
  18. Gittleman, J. L. [ed]. (1996): Carnivore Behaviour, Ecology and Evolution. Vol 2. 644 pp. Cornell University Press; Ithaca.Google Scholar
  19. Herring, S. W. (1972): Sutures — a tool in functional cranial analysis. Acta Anatomica.83: 222–247.Google Scholar
  20. Herring, S. W. (1998): How can animal models answer clinical questions? In: C.Carels & G.Williams (eds). The future of orthodontics. 89–96. — Leuven University Press.Google Scholar
  21. Herring, S. W. (2000): sutures and craniosynostosis: a comparative, functional, and evolutionary perspective. In: M. M.Cohen [ed]. Craniosynostosis. 3–10. — Oxford University Press.Google Scholar
  22. Herring, S. W. &Mucci, R. J. (1991):In-Vivo strain in cranial sutures: the zygomatic arch. Journal of Morphology.207: 225–239.CrossRefGoogle Scholar
  23. Herring, S. W., Shengyi Teng., Xiaofeng Huang., Mucci, R. J. &Freeman, J. (1996): Patterns of bone strain in the zygomatic arch. Anatomical record.246: 1–12.CrossRefGoogle Scholar
  24. Herring, S. W. &Shengyi Teng. (1999): Strain in the braincase and its sutures during function. American Journal of Physical Anthropology.109: 1–19.CrossRefGoogle Scholar
  25. Herzog, W. (2000): Skeletal Muscle Mechanics. — John Wiley & Sons Ltd.Google Scholar
  26. Hylander, W. L. (1979a): Mandibular function in Galago crassicaudatus andMacaca fascicularis: an In Vivo approach to stress analysis of the mandible. Journal of Morphology.159 (2): 253–296.CrossRefGoogle Scholar
  27. Hylander, W. L. (1979b): The functional significance of primate mandibular form. Journal of Morphology.160 (2): 223–239.CrossRefGoogle Scholar
  28. Hylander, W. L. (1984): Stress and strain in the mandibular symphysis of primates: A test of competing hypotheses. American Journal of Physical Anthropology.64: 1–46.CrossRefGoogle Scholar
  29. Hylander, W. L. (1985): Mandibular function and biomechanical stress and scaling. Amer. Zool.25: 315–330.Google Scholar
  30. Hylander. W. L. (1986):In-Vivo bone strain as an indicator of masticatory bite force inMacaca fascicularis. Arch. Oral. Biol.31 (3): 149–157.CrossRefGoogle Scholar
  31. Hylander, W. L. (1988): Implications ofIn-Vivo Experiments for interpretation of the functional significance of “Robust” Australopithecine jaws. Journal of Morphology.159 (2): 253–296.CrossRefGoogle Scholar
  32. Hylander, W. L, & K. R.Johnson. (1992): Strain gradients in the craniofacial region of primates. In: Z.Davidovitch [ed] The biological mechanisms of tooth movement and craniofacial adaptation. 559–569. Ohio University Press.Google Scholar
  33. Hylander. W. L., M. J. Ravosa., C. F. Ross &K. R. Johnson. (1998): Mandibular corpus strain in primates: further evidence for a functional link between symphyseal fusion and jaw-adductor muscle force. American Journal of Physical Anthropology.107: 257–271.CrossRefGoogle Scholar
  34. Jaslow, C. R. (1989): Sexual dimorphism of cranial suture complexity in wild sheep (Ovis orientalis): Journal of Zoology. London.95: 273–284.Google Scholar
  35. Jaslow, C. R. (1990): Mechanical properties of cranial sutures. Journal of Biomechanics.23: 313–321.CrossRefGoogle Scholar
  36. Jenkins, I. (1998): Cranial form and function in some Permian carnivorous synapsid (mammal-like) reptiles. — Unpublished PhD-Dissertation. — University of Cambridge.Google Scholar
  37. Kemp, T. S. (1969): On the functional morphology of the gorgonopsid skull. Philosophical. Transactions Royal Society London.B 256: 1–83.CrossRefGoogle Scholar
  38. Kemp, T. S. (1972): The jaw articulation and musculature of the whaitsiid Therocephalia. In:K. A. Joysey. &T. S. Kemp. (Ed’s). Studies in vertebrate evolution. 213–230. Oliver and Boyd. Edinburgh.Google Scholar
  39. Kemp, T. S. (1982): Mammal-like reptiles and the origin of mammals. Academic Press, London.Google Scholar
  40. Lauder, G. V. (1995): On the inference of function from structure. In: J. J.Thomason [ed]. Functional Morphology in Vertebrate Palaeontology. 1–18. Cambridge University Press.Google Scholar
  41. Lee, M. S. Y. (1997): A taxonomic revision of pareiasaurian reptiles: implications for Permian terrestrial palaeoecology. Modern Geology.21: 231–298.Google Scholar
  42. Martin, R. B., D. B. Burr &N. A. Sharkey (1998): Skeletal Tissue Mechanics. — Springer, New York.Google Scholar
  43. Mendrez, Ch. H. (1974a): Etude du crane d’un jeune specimen deMoschorhinus kitchingi Broom 1920 (?Tigrisuchus simus), Therocephalia, Pristerosauria, Moschorhinidae d’Afrique australe. Annals South African Museum.64: 71–115.Google Scholar
  44. Mendrez, Ch. H. (1974b): A new specimen ofPromoschorhynchus platyrhinus Brink 1954 (Moschorhinidae) from the Daptocephalus-zone (Late Permian) of South Africa. Palaeontologia Africana.17: 69–85.Google Scholar
  45. Mendrez, Ch. H. (1975): Principales variations du palais chez les therocephales sud-africains (Pristerosauria et Scaloposauria) au cours du Permien Superieur et du Trias Inferieur. Colloque International C.N.R.S No. 218. (Paris). Problemes actuels de paleontologie-evolution des vertebres. 379–408.Google Scholar
  46. Meriam, J. L. &Kraige, L. G. (1993): Engineering mechanics (2 volumes). — John Wiley & Sons, Inc. New York.Google Scholar
  47. Parrington, F. R. (1955): On the cranial anatomy of some gorgonopsids and the synapsid middle ear. Proceedings Zoological Society London.125 (1): 1–40.Google Scholar
  48. Radinsky, L. B. (1981a): Evolution of skull shape in carnivores, 1: Representative modern carnivores. Biological Journal Linnean Society. London.15: 369–388.CrossRefGoogle Scholar
  49. Radinsky, L. B. (1981b): Evolution of skull shape in carnivores, 2: Additional modern carnivores. Biological Journal Linnean Society. London.16: 337–355.CrossRefGoogle Scholar
  50. Rafferty, K. L &Herring, S. W (1999): Craniofacial sutures: morphology, growth andIn Vivo masticatory strains. Journal of Morphology.242: 167–179.CrossRefGoogle Scholar
  51. Ravosa, M. J. andHylander, W. L. (1993): Functional significance of an ossified mandibular symphysis: A reply. American Journal of Physical Anthropology.90: 509–512.CrossRefGoogle Scholar
  52. Romer, A. S. 1966. Vertebrate Paleontology. — University of Chicago Press.Google Scholar
  53. Rubidge, B. S. [ed]. (1995): Biostratigraphy of the Beaufort Group (Karoo Supergroup). — Geological Survey of South Africa. Biostratigraphic Series 1.Google Scholar
  54. Sennikov, A. G. (1996): Evolution of the Permian and Triassic tetrapod communities of Eastern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology.120: 331–351.CrossRefGoogle Scholar
  55. Sigogneau, D. (1970a): Revision Systematique des Gorgonopsiens Sud-Africains. Cahiers. Paleontologie.Google Scholar
  56. Sigogneau-Russell, D. (1989): Theriodontia 1. In: O.Kuhn [ed]. Encyclopaedia of Paleoherpetology. Part 17B/1. — Gustav Fischer Verlag Stuttgart.Google Scholar
  57. Sues, H-D [ed]. (2000). Evolution of herbivory in terrestrial vertebrates: perspectives from the fossil record. — Cambridge University Press.Google Scholar
  58. Thomason, J. J. &Russell, A. P. (1986): Mechanical factors in the evolution of the mammalian secondary palate: a theoretical analysis. Journal of Morphology.189: 189–213.CrossRefGoogle Scholar
  59. Thomason, J. J. (1991): Cranial strength in relation to estimated biting forces in some mammals. Canadian Journal of Zoology.69: 2326–2333.CrossRefGoogle Scholar
  60. Thomason, J. J. [ed]. (1995): Functional Morphology in Vertebrate Paleontology. — Cambridge University Press.Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 2002

Authors and Affiliations

  • Ian Jenkins
    • 1
  • Jeff J. Thomason
    • 2
  • Dave B. Norman
    • 1
  1. 1.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.Dept of Biomedical SciencesOntario Veterinary College University of GuelphGuelphCanada

Personalised recommendations