Senckenbergiana lethaea

, Volume 79, Issue 1, pp 43–49 | Cite as

Population size and taxonomic diversity in geologic time: a brief look at two density-dependent models



Density-dependent models of changes in the population size of a fossil species in geologic time, or the taxonomic diversity of a fossil group in geologic time, can be formulated using (1) the logistic equation model or (2) a piecewise linear/stochastic model ofGrenfell et al. One may test (or at least get an indication) whether or not one of the two types of models holds for a particular estimate of population size (or taxonomic diversity) Xt by plotting the value of the estimate as a function of time plus a scattergram of Xt+1 versus Xt for all pairs of estimates of population size (or taxonomic diversity) {Xt, Xt+1} successive in time.

Key words

Analytical Paleobiology logistic equations stochastic models population size taxonomic diversity 

Populationsgröße und taxonomische Diversität in geologischer Zeit: eine Kurzbetrachtung zweier dichteabhängiger Modelle


Dichte-abhängige Modelle von Wechseln in den Populationsgrößen einer fossilen Art im Laufe geologischer Zeit oder die taxonomische Diversität einer Fossilgruppe im Laufe geologischer Zeit kann man formulieren durch (1) logistische Gleichungen oder (2) durch ein stückweise lineares/stochastisches Modell vonGrenfell et al. Man mag ausprobieren, ob eines der beiden Modelle geeignet ist, die bestimmte Populationsgröße (oder taxonomischen Diversität) Xt abzuschätzen, indem der Schätzwert als Funktion der Zeit in Verbindung mit einem Streudiagramm von Xt+1 versus Xt für alle Paare von Schätzungen der Populationsgrößen (oder taxonomischen Diversität) {Xt, Xt+1} in einheitlicher Folge aufgetragen wird.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archer, A. W., Kuecher, G. J. &Kvale, E. P. (1995): The role of tidalvelocity assymetries in the deposition of silty tidal rhythmites (Carboniferous, Eastern Interior Coal Basin, U.S.A.). — Journal of Sedimentary Research,A65: 408–416, 13 text-figs; Tulsa/Okla.Google Scholar
  2. Boucot, A. J. (1981): Principles of Benthic Marine Biology. — 1–463; New York (Academic Press).Google Scholar
  3. Carr, T. R. &Kitchell, J. A. (1980): Dynamics of taxonomic diversity. — Paleobiology,6: 427–443, 8 text-figs, 1 tab.; Lawrence/Kan.Google Scholar
  4. Chiba, S. (1998): A mathematical model for long-term patterns of evolution: effects of environmental stability and instability on macroevolutionary patterns and mass extinctions. — Paleobiology,24: 336–348, 4 text-figs; Lawrence/Kan.Google Scholar
  5. Fowler, T. &Roach, D. (1991): Non-linear dynamics, chaos and fractals with applications to geological systems. — In: G. V.Middleton [Ed.], Nonlinear Dynamics, Chaos and Fractals with Applications to Geological Systems. — Geol. Assoc. Canada Short Course Notes,9: 59–81, 10 text-figs, 1 tab.; Toronto.Google Scholar
  6. Gilinsky, N. L. (1991): The Pace of Taxonomic Evolution. — In: N. L.Gilinsky & P. W.Signor [Eds], Analytical Paleobiology, Short Course in Paleontology no. 4. — Paleontological Society Short Course Notes: 157–174, 6 text-figs; Lawrence/Kan.Google Scholar
  7. Graham, J. (1982): Transition from basin-plain to shelf deposits in the Carboniferous Flysch of Southern Morocco. — Sedimentary Geology,33: 173–194, 11 text-figs; Amsterdam.CrossRefGoogle Scholar
  8. Grenfell, B. T., Wilson, K., Finkenstädt, B. F., Coulson, T. N., Murray, S., Albon, S. D., Pemberton, J. M., Clutton-Brock, T. H. &Crawley, M. J. (1998): Noise and determinism in synchronized sheep dynamics. — Nature,394: 674–677, 3 text-figs, 1 tab.; London.CrossRefGoogle Scholar
  9. Harper, C. W. (1996): Patterns of diversity, extinction, and origination in the Ordovician-Devonian Stropheodontacea. — Historical Biology,11: 267–288, 8 text-figs, 3 tabs; Amsterdam.CrossRefGoogle Scholar
  10. Harper, C. W. (1998): Thickening and/or thinning upward patterns in sequences of strata: tests of significance. — Sedimentology,45: 657–696, 5 text-figs, 14 tabs; Oxford.CrossRefGoogle Scholar
  11. Hastings, A. &Higgins, K. (1994): Persistence of Transients in Spatially Structured Ecological Models. — Science,263: 1133–1136, 3 text-figs; Washington/D.C.CrossRefGoogle Scholar
  12. Kitchell, J. A. &Carr, T. R. (1985): Nonequilibrium model of diversification: faunal turnover dynamics. — In:J. W. Valentine [Ed.], Phanerozoic Diversity Patterns — Profiles in Macroevolution, 277–308; New Jersey (Princeton University Press).Google Scholar
  13. May, R. (1989): The chaotic rhythms of life. — New Scientist,124: 37–41, 4 text-figs; London.Google Scholar
  14. Maynard Smith, J. &Slatkin, M. (1992): The stability of predatorprey systems. — Ecology,54: 384–391, 10 text-figs; Tempe.CrossRefGoogle Scholar
  15. Middleton, G. V. (1990): Non-linear dynamics and chaos: potential applications in the earth Sciences. — Geoscience Canada,17: 3–11, 6 text-figs; Toronto.Google Scholar
  16. Prokoph, A. &Barthelmes, F. (1996): Detection of nonstationarities in geological time series. — Computers and Geosciences,22: 1097–1108, 8 text-figs; Oxford.CrossRefGoogle Scholar
  17. Schülke, I. (1998): Conodont community structure around the ‘Kellwasser mass extinction event’ (Frasnian/Famennian boundary interval). — Senckenbergiana lethaea,77 (1/2): 87–99, 5 text-figs, 1 tab.; Frankfurt am Main.Google Scholar
  18. Sepkoski, J. J., Jr. (1978): A kinetic model Phanerozoic taxonomic diversity. I. Analysis of marine orders. — Paleobiology,4: 223–251, 13 text-figs, 1 tab.; Lawrence/Kan.Google Scholar
  19. Sepkoski, J. J., Jr. (1979): A kinetic model Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. — Paleobiology,5: 222–251, 11 text-figs; Lawrence/Kan.Google Scholar
  20. Sepkoski, J. J., Jr. (1991): Population Biology and Evolution. — In: N. L.Gilinsky & P. W.Signor [Eds], Analytical Paleobiology, Short Course in Paleontology no. 4. — Paleontological Society Short Course Notes: 136–156, 11 text-figs; Lawrence/Kan.Google Scholar
  21. Stenseth, N. C. &Chan, J.-S. (1998): Nonlinear sheep in a noisy world. — Nature,394: 620–621; London.CrossRefGoogle Scholar
  22. Vivaldi, F. (1989): An experiment with mathematics. — New Scientist,124: 46–49, 3 text-figs; London.Google Scholar

Copyright information

© E. Schweizerbart’sche Verlagsbuchhandlung 1999

Authors and Affiliations

  1. 1.School of Geology and GeophysicsUniversity of OklahomaNormanU.S.A.

Personalised recommendations