Advances in Applied Clifford Algebras

, Volume 8, Issue 2, pp 283–298 | Cite as

Holomorphie quaternionienne

  • Louis Pernas


The paper deals with several aspects of Fueter-holomorphic functions. In the first part a Cauchy-type formula as well as a Morera-type theorem are proved. The second part is concerned with “hemiharmonic” functions which are solutions of δ2 f = 0 and are closely related to holomorphic functions. They satisfy a “Mean value” theorem. In the third part new characterizations of holomorphy are given. The fourth part is a study of homogeneous hemiharmonic and holomorphic functions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brackx F., R. Delanghe, F. Somen, Clifford analysis,Res. Notes in Math, (076), (1982) Pitman.Google Scholar
  2. [2]
    Fueter R., Die Funktionentheorie der Differentialgleichungen Δu=0 und ΔΔu=0 mit vier reelen Variablen,Comment. Math. Helv,7 (1935), 307–335.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Sudbery A., Quaternionic Analysis,Math. Proc. Camb. Phil. Soc.,85 (1979), 199–225.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Schuler B., Zur Theorie der Regulaeren Funktionen,Comment. Math. Helv,10 (1937), 327–342.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Pernas L., About some operators in quaternionic analysis, “Proc. Meeting on quaternionic structures in math. and phys.” Trieste (1994), 267–276.Google Scholar
  6. [6]
    Ryan J., Iterated Dirac operators in Cn,Zeitschrift fur Anal. und Anwendungen 9, (1990), 385–401.MATHGoogle Scholar

Copyright information

© Birkhäuser-Verlag AG 1998

Authors and Affiliations

  1. 1.Faculté de Mathématiques et InformatiqueUniversité de Picardie Jules VerneAmiensFrance

Personalised recommendations