Advances in Applied Clifford Algebras

, Volume 11, Issue 2, pp 191–213 | Cite as

Octonions and triality

  • Pertti Lounesto


Cross Product Division Algebra Clifford Algebra Rotation Plane Invariant Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams J. F., On the non-existence of elements of Hopf invariant one.Ann. of Math. 72 (1960), 20–104.CrossRefMathSciNetGoogle Scholar
  2. Adams J. F., Vector fields of spheres.Ann. of Math. 75 (1962), 603–632.CrossRefMathSciNetGoogle Scholar
  3. van der Blij F., History of the octaves.Simon Stevin 34 (1961), 106–125.MATHMathSciNetGoogle Scholar
  4. Cayley A., On Jacobi’s elliptic functions, in reply to Rev. Brice Bronwin and on quaternions.Phil. Mag. (3)26 (1845), 208–211.Google Scholar
  5. C. Chevalley C.,The Algebraic Theory of Spinors. Columbia University Press, New York, 1954.The Algebraic Theory of Spinors and Clifford Algebras. Springer, Berlin, 1997.Google Scholar
  6. Dixon G. M.,Division Algebras: Octonions, Quaternions, Complex Numbers and the Algebraic Design of Physics. Kluwer, Dordrecht, 1994.MATHGoogle Scholar
  7. Ebbinghaus H.-D. et al. (eds.), “Numbers”, Springer, New York, 1991.MATHGoogle Scholar
  8. Hahn A. J., Cayley algebras and the automorphisms ofPO 8(V) andPΩ8(V).Amer. J. Math. 98 (1976), 953–987.MATHCrossRefMathSciNetGoogle Scholar
  9. Hahn A. J., Cayley algebras and the isomorphisms of the orthogonal over arithmetic and local domains.J. Algebra 45 (1977), 210–246.MATHCrossRefMathSciNetGoogle Scholar
  10. Harvey F. R.,Spinors and Calibrations. Academic Press, San Diego, 1990.MATHGoogle Scholar
  11. Knus M.-A., A. Merkurjev, M. Rost, J.-P. Tignol:The Book of Involutions. American Mathematical Society, Colloquium Publications44, 1998.Google Scholar
  12. Massey W. S., Cross products of vectors in higher dimensional Euclidean spaces.Amer. Math. Monthly 90 (1983), #10, 697–701.MATHCrossRefMathSciNetGoogle Scholar
  13. Micali A., Ph. Revoy:Modules quadratiques. Cahiers Mathématiques10, Montpellier, 1977.Bull. Soc. Math. France 63, suppl. (1979), 5–144.Google Scholar
  14. Okubo S.,Octonions and Non-associative Algebras in Physics. Cambridge University Press, Cambridge, 1994.Google Scholar
  15. Porteous I. R.,Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  16. Schafer R. D. On the algebras formed by the Cayley-Dickson process.Amer. J. Math. 76 (1954), 435–446.MATHCrossRefMathSciNetGoogle Scholar
  17. Springer T. A., F. D. Veldkamp:Octonions, Jordan Algebras and Exceptional Groups. Springer, Berlin, 2000.MATHGoogle Scholar
  18. Wene G. P., A construction relating Clifford algebras and Cayley-Dickson algebras.J. Math. Phys. 25 (1984), 2351–2353.MATHCrossRefADSMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag AG 2001

Authors and Affiliations

  • Pertti Lounesto
    • 1
  1. 1.Institute of MathematicsHelsinki University of TechnologyHelsinki

Personalised recommendations