Advances in Applied Clifford Algebras

, Volume 11, Supplement 1, pp 93–120 | Cite as

Curvature actions on Spin(n) bundles

  • Collin Bennett
  • Thomas Branson


We compute the number of linearly independent ways in which a tensor of Weyl type may act upon a given irreducible tensor-spinor bundle ν over a Riemannian manifold. Together with the analogous but easier problem involving actions of tensors of Einstein type, this enumerates the possible curvature actions on ν.


Scalar Curvature Weyl Group Curvature Action Weyl Tensor Riemann Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Baum, T. Friedrich, R. Grunewald, and I. Kath, “Twistor and Killing Spinors on Riemannian Manifolds,” Seminarbericht 108, Humboldt-Universität zu Berlin, 1990.Google Scholar
  2. [2]
    J.-P. Bourguignon,Les variétés de dimension 4à signature non nulle dont la courbure est harmonique sont d’Einstein, Invent. Math.63 (1981) 263–286.MATHCrossRefADSMathSciNetGoogle Scholar
  3. [3]
    T. Branson,Intertwining operators for spinor-form representations of the conformal group, Adv. in Math.54 (1984) 1–21.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    T. Branson,Second order conformal covariants I,II, University of Copenhagen Mathematical Institute preprints 2,3 (1989).Google Scholar
  5. [5]
    T. Branson,Nonlinear phenomena in the spectral theory of geometric linear differential operators, Proc. Symp. Pure Math.59 (1996) 27–65.MathSciNetGoogle Scholar
  6. [6]
    T. Branson, G. Ólafsson and B. Ørsted,Spectrum generating operators, and intertwining operators for representations induced from a maximal parabolic subgroup, J. Funct. Anal.135 (1996) 163–205.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    T. Branson,Second order conformal covariants, Proc. Amer. Math. Soc.126 (1998) 1031–1042.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    R. Brauer,Sur la multiplication des caractéristiques des groupes continus et semi-simples, C.R. Acad. Sci. Paris204 (1937) 1784–1786.Google Scholar
  9. [9]
    H. Fegan,Conformally invariant first order differential operators, Quart. J. Math. Oxford27 (1976) 371–378.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    H. Freudenthal,Zur Berechnung der Charaktere der halbeinfachen Lieschen Gruppen, I,II, Indag. Math.16 (1954) 369–376 and 487–491.MathSciNetGoogle Scholar
  11. [11]
    S. Goldberg, “Curvature and Homology,” Dover Publications, New York, 1982.Google Scholar
  12. [12]
    S. Helgason, “Differential Geometry, Lie Groups, and Symmetric Spaces,” Academic Press, 1978.Google Scholar
  13. [13]
    J. Humphreys, “Introduction to Lie Algebras and Representation Theory,” Springer-Verlag, New York, 1972.MATHGoogle Scholar
  14. [14]
    S. Kobayashi and K. Nomizu, “Foundations of Differential Geometry I, II,” John Wiley & Sons, 1963 and 1969.Google Scholar
  15. [15]
    B. Kostant,A formula for the multiplicity of a weight, Trans. Amer. Math. Soc.93 (1959) 53–73.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    R. Delanghe, F. Sommen and V. Souček, “Clifford Algebra and Spinor-Valued Functions,” Kluwer Academic Publishers, Dordrecht, 1992.MATHGoogle Scholar
  17. [17]
    E. Stein and G. Weiss,Generalization of the Cauchy-Riemann equations and representations of the rotation group, Amer. J. Math.90 (1968) 163–196.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    R. Strichartz,Linear algebra of curvature tensors and their covariant derivatives, Canad. J. Math.40 (1988) 1105–1143.MATHMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag AG 2001

Authors and Affiliations

  1. 1.Department of Mathematical and Computer SciencesLoyola UniversityChicagoUSA
  2. 2.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations