Advertisement

Medizinische Klinik

, Volume 94, Supplement 1, pp 6–11 | Cite as

„Targeted Delivery“ in den Gastrointestinaltrakt

  • Claudia S. Leopold
Article

Zusammenfassung

□ Neben dem Dünndarm-Targeting hat insbesondere das Dickdarm-Targeting in den letzten Jahren an Bedeutung gewonnen einerseits durch die Möglichkeit der Resorption von Peptidarzneistoffen aus dem Dickdarm aufgrund der dort geringeren Peptidasenaktivität und andererseits durch die Möglichkeit der topischen Therapie von Erkrankungen des Dickdarms.

□ Galenisch betrachtet werden zur Zeit vier Ansätze verfolgt, um ein Dickdarm-Targeting zu erreichen: die Freisetzungssteuerung über den luminalen pH-Wert, über die Aktivität der bakteriellen Enzyme im Kolon, über die Dünndarmtransitzeit sowie über den durch peristaltische Wellen entstehenden Druck im distalen Kolon. Die pH- und zeitkontrollierte Freisetzung finden auch beim Dünndarm-Targeting Einsatz. Die diffusionskontrollierte Freisetzung ermöglicht eine Freigabe über den gesamten Darmbereich.

Schlüsselwörter

Dickdarm-Targeting pH-Kontrolle Enzymkontrolle Zeitkontrolle Druckkontrolle Diffusionskontrolle 

Targeted delivery to the intestine

Abstract

□ Drug delivery to the intestine has become attractive to researchers with the main interest in the delivery of peptide drugs to the large intestine and the treatment of colonic diseases.

□ There are currently 4 strategies that are pursued to reach colon specificity: 1. by relying on the pH difference between the small and the large intestine; 2. by exploiting the enzymatic activity of the colonic microflora; 3. by relying on the relatively constant small intestinal transit time and 4. by taking advantage of the increase of the luminal pressure in the colon due to strong peristaltic waves. Drug delivery to the small intestine may be achieved by pH-controlled and time-controlled drug release mechanisms. Diffusion-controlled systems allow drug delivery over the entire gastrointestinal tract.

Key Words

Colon-specific drug delivery pH-controlled drug release Enzyme-controlled drug release Time-controlled drug release Pressure-controlled drug release Diffusion-controlled drug release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Abramowitz R, Ranadive S, Jain NB, et al. Development of a colonic delivery system. Pharm Res 1997; 14:S656.Google Scholar
  2. 2.
    Ashford M, Fell J, Attwood D, et al. An evaluation of pectin as a carrier for drug targeting to the colon. J Controlled Release 1993;26:213–20.CrossRefGoogle Scholar
  3. 3.
    Ashford M, Fell J, Attwood D, et al. Studies on pectin formulations for colonic drug delivery. J Controlled Release 1994;30:225–32.CrossRefGoogle Scholar
  4. 4.
    Ashford M, Fell JT, Attwood D, et al. An in vivo investigation into the suitability of pH dependent polymers for colonic targeting. Int J Pharm 1993;95:193–9.CrossRefGoogle Scholar
  5. 5.
    Ashford M, Fell JT, Attwood D, et al. An in vitro investigation into the suitability of pH dependent polymers for colonic targeting. Int J Pharm 1993;91:241–5.CrossRefGoogle Scholar
  6. 6.
    Bauer KH. Vernetzte Polysaccharide, Verfahren zu ihrer Herstellung und ihre Verwendung. Deutsche Patent-schrift 42 09 160, 1993.Google Scholar
  7. 7.
    Betzing J, Bauer KH. Synthese von substituierten Galactomannanen als Hilfsstoffe zur Herstellung von dickdarmabbaubaren Arzneiformen. Pharm Ztg Wiss 1992;5/137:131–4.Google Scholar
  8. 8.
    Binns J, Stevens HNE, McEwen J, et al. The tolerability of multiple oral doses of Pulsincap™ capsules in healthy volunteers. J Controlled Release 1996; 38:151–8.CrossRefGoogle Scholar
  9. 9.
    Bragger JL, Lloyd AW, Soozandehfar SH, et al. Investigations into the azo reducing activity of a common colonic microorganism. Int J Pharm 1997;157:61–71.CrossRefGoogle Scholar
  10. 10.
    Brøndsted H, Andersen C, Hovgaard L. Crosslinked dextran — a new capsule material for colon targeting of drugs. J Controlled Release 1998;53:7–13.CrossRefGoogle Scholar
  11. 11.
    Brøndsted H, Kopecek J. Hydrogels for site-specific drug delivery to the colon: In vitro and in vivo degradation. Pharm Res 1992;9:1540–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Chen RH, Tsaih ML, Lin WC. Effects of chain flexibility of chitosan molecules on the preparation, physical, and release characteristics of the prepared capsule. Carbohydr Polym 1996;31:141–8.CrossRefGoogle Scholar
  13. 13.
    Dew MJ, Ryder REJ, Evans N, et al. Colonic release of 5-aminosalicylic acid from an oral preparation in active ulcerative colitis. Br J Clin Pharmacol 1983;16:185–7.PubMedGoogle Scholar
  14. 14.
    Evans DF, Pye G, Bramley R, et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29:1035–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Fallingborg J, Christensen LA, Jacobsen BA, et al. Very low intraluminal colonic pH in patients with active ulcerative colitis. Dig Dis Sci 1993;38:1989–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Friend DR. Glycoside prodrugs: Novel pharmacotherapy for colonic diseases. STP Pharma Sci 1995;5:70–6.Google Scholar
  17. 17.
    Friend DR, Tozer TN. Drug glycosides in oral colon-specific drug delivery. J Controlled Release 1992;19:109–20.CrossRefGoogle Scholar
  18. 18.
    Gazzaniga A, Sangalli ME, Giordano F. Oral Chronotopic® drug delivery systems: Achievement of time and/or site specificity. Eur J Pharm Biopharm 1994;40:246–50.Google Scholar
  19. 19.
    Harboe E, Larsen C, Johansen M, et al. Macromolecular prodrugs. XV. Colon-targeted delivery — Bioavailability of naproxen from orally administered dextran-naproxen ester prodrugs varying in molecular size in the pig. Pharm Res 1989;6:919–23.PubMedCrossRefGoogle Scholar
  20. 20.
    Hegarty M, Atkins G. Controlled release device construction. International Patent WO 95/10263, 1995.Google Scholar
  21. 21.
    Hirayama F, Minami K, Uekama K. Colon-specific drug delivery based on cyclodextrin prodrug, in vitro and in vivo drug release behaviour from biphenylacetic acid/β-cyclodextrin conjugates in rats. Proc 2nd World Meeting APGI/APV 1998;2:935–6.Google Scholar
  22. 22.
    Hirayama F, Minami K, Uekama K. In-vitro evaluation of biphenylyl acetic acid-β-cyclodextrin conjugates as colon-targeting prodrugs: Drug release behaviour in rat biological media. J Pharm Pharmacol 1996;48:27–31.PubMedGoogle Scholar
  23. 23.
    Hovgaard L, Brøndsted H. Dextran hydrogels for colon-specific drug delivery. J Controlled Release 1995;36:159–66.CrossRefGoogle Scholar
  24. 24.
    Ishibashi T, Hatano H, Kobayashi M, et al. Design and evaluation of a new capsule-type dosage form for colon-targeted delivery of drugs. Int J Pharm 1998;168:31–40.CrossRefGoogle Scholar
  25. 25.
    Kakoulides EP, Smart JD, Tsibouklis J. Azocrosslinked poly(acrylic acid) for colonic delivery and adhesion specificity: in vitro degradation and preliminary ex vivo bioadhesion studies. J Controlled Release 1998;54:95–109.CrossRefGoogle Scholar
  26. 26.
    Kesselhut JF, Bauer KH. Herstellung und Untersuchung von wasserunlöslichen Dextranfettsäureestern als Umhüllungsmaterialien für das Dickdarm-Targeting. Pharmazie 1995;50:263–9.PubMedGoogle Scholar
  27. 27.
    Kraeling MEK, Ritschel WA. Development of a colonic release capsule dosage form and the absorption of insulin. Methods Find Exp Clin Pharmacol 1992;14:199–209.PubMedGoogle Scholar
  28. 28.
    Larsen C, Harboe E, Johansen M, et al. Macromolecular prodrugs. XVI. Colon-targeted delivery — Comparison of the rate of release of naproxen from dextran ester prodrugs in homogenates of various segments of the pig gastrointestinal (GI) tract. Pharm Res 1989;6:995–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Larsen C, Jensen BH, Olesen HP. Bioavailability of ketoprofen from orally administered ketoprofen-dextran ester prodrugs in the pig. Acta Pharm Nord 1991;3:71–6.PubMedGoogle Scholar
  30. 30.
    Lehmann KOR, Dreher KD. Methacrylate-galactomannan coating for colon-specific drug delivery. Proc Int Sympos Controlled Release Bioact Mater 1991;18:331–2.Google Scholar
  31. 31.
    Leopold CS. Prodrugs für das Dickdarm-Targeting. Pharm Unserer Zeit 1997;26:289–98.PubMedCrossRefGoogle Scholar
  32. 32.
    Leopold CS, Eikeler D. Basic polymers as coating materials for the pH-controlled drug delivery in inflammatory colonic disorders — An in vitro assessment. Proc 2nd World Meeting APGI/APV 1998;2:363–4.Google Scholar
  33. 33.
    Leopold CS, Eikeler D. Eudragit® E as coating material for the pH-controlled drug release in the topical treatment of inflammatory bowel disease (IBD). J Drug Targeting (in press).Google Scholar
  34. 34.
    Leopold CS, Friend DR. In vitro study for the assessment of poly(L-aspartic acid) as a drug carrier for colon-specific drug delivery. Int J Pharm 1995;126: 139–45.CrossRefGoogle Scholar
  35. 35.
    Leopold CS, Friend DR. In vivo pharmacokinetic study for the assessment of poly(L-aspartic acid) as a drug carrier for colon-specific drug delivery. J Pharmacokinetic Biopharm 1995;23:397–406.CrossRefGoogle Scholar
  36. 36.
    Lloyd AW, Martin GP, Soozandehfar SH. Azopolymers: A means of colon specific drug delivery? Int J Pharm 1994;106:255–60.CrossRefGoogle Scholar
  37. 37.
    Macleod GS, Fell JT, Collett JH. Studies on the physical properties of mixed pectin/ethylcellulose films intended for colonic drug delivery. Int J Pharm 1997;157:53–60.CrossRefGoogle Scholar
  38. 38.
    McLeod AD. Dextran prodrugs for colon-specific drug delivery. In: Friend DR, ed. Oral colon-specific drug delivery. Boca Raton: CRC Press, 1992:213–31.Google Scholar
  39. 39.
    McLeod AD, Fedorak RN, Friend DR, et al. A glucocorticoid prodrug facilitates normal mucosal function in rat colitis without adrenal suppression. Gastroenterology 1994;106:405–13.PubMedGoogle Scholar
  40. 40.
    McLeod AD, Tolentino L, Tozer TN. Glucocorticoid-dextran conjugates as potential prodrugs for colon-specific delivery: Steady-state pharmacokinetics in the rat. Biopharm Drug Dispos 1994;15:151–61.PubMedCrossRefGoogle Scholar
  41. 41.
    Milojevic S, Newton JM, Cummings JH, et al. Amylose, the new perspective in oral drug delivery to the human large intestine. STP Pharma Sci 1995;5:47–53.Google Scholar
  42. 42.
    Mitsuoka T. Intestinal Bacteria and Health. Tokyo: Harcourt Brace Jovanovich, 1978.Google Scholar
  43. 43.
    Muraoka M, Hu ZP, Shimokawa T, et al. Evaluation of intestinal pressure-controlled colon delivery capsule containing caffeine as a model drug in human volunteers. J Controlled Release 1998;52:119–29.CrossRefGoogle Scholar
  44. 44.
    Narisawa S, Nagata M, Danyoshi C, et al. An organic acid-induced sigmoidal release system for oral controlled-release preparations. Pharm Res 1994;11:111–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Niwa K, Takaya T, Morimoto T, et al. Preparation and evaluation of a time-controlled release capsule made of ethylcellulose for colon delivery of drugs. J Drug Targeting 1995;3:83–9.CrossRefGoogle Scholar
  46. 46.
    Pozzi F, Furlani P, Gazzaniga A, et al. The TIME CLOCK system: A new oral dosage form for fast and complete release of drug after a predetermined lag time. J Controlled Release 1994;31:99–108.CrossRefGoogle Scholar
  47. 47.
    Rao SS, Ritschel WA. Development and in vitro/in vivo evaluation of a colonic release capsule of vasopressin. Int J Pharm 1992;86:35–41.CrossRefGoogle Scholar
  48. 48.
    Roediger W, Lawson MJ, Kwok V, et al. Colonic bicarbonate output as a test of disease activity in ulcerative colitis. J Clin Pathol 1984;37:704–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Rubinstein A, Gliko-Kabir I. Synthesis and swelling-dependent enzymatic degradation of borax-modified guar gum for colonic delivery purposes. STP Pharma Sci 1995;5:41–6.Google Scholar
  50. 50.
    Rubinstein A, Gliko-Kabir I, Penhasi A, et al. Enzyme dependent release of budesonide from crosslinked guar hydrogels. Proc Int Symp Controlled Release Bioact Mater 1997;24:839–40.Google Scholar
  51. 51.
    Rubinstein A, Nakar D, Sintov A. Chondroitin sulfate: A potential biodegradable carrier for colon-specific drug delivery. Int J Pharm 1992;84:141–50.CrossRefGoogle Scholar
  52. 52.
    Rubinstein A, Nakar D, Sintov A. Colonic drug delivery: Enhanced release of indomethacin from cross-linked chondroitin matrix in rat cecal content. Pharm Res 1992;9:276–8.PubMedCrossRefGoogle Scholar
  53. 53.
    Rubinstein A, Radai R. In vitro and in vivo analysis of colon specificity of calcium pectinate formulations. Eur J Pharm Biopharm 1995;41:291–5.Google Scholar
  54. 54.
    Rubinstein A, Radai R, Ezra M, et al. In vitro evaluation of calcium pectinate: A potential colon-specific drug delivery carrier. Pharm Res 1993;10:258–63.PubMedCrossRefGoogle Scholar
  55. 55.
    Saffran M, Kumar GS, Neckers DC, et al. Biodegradable azopolymer coating for oral delivery of peptide drugs. Biochem Soc Trans 1990;18:752–4.PubMedGoogle Scholar
  56. 56.
    Saffran M, Kumar GS, Savariar C, et al. A new approach to the oral administration of insulin and other peptide drugs. Science 1986;233:1081–4.PubMedCrossRefGoogle Scholar
  57. 57.
    Samyn C, Kalala W, Van den Mooter G, et al. Synthesis and in vitro biodegradation of poly(ether-ester) azo polymers designed for colon targeting. Int J Pharm 1995;121:211–6.CrossRefGoogle Scholar
  58. 58.
    Sarlikiotis AW, Bauer KH. Synthese und Untersuchung von Polyurethanen mit Galactomannan-Segmenten als Hilfsstoffe zur Freisetzung von Peptid-Arzneistoffen im Dickdarm. Pharm Ind 1992;54:873–80.Google Scholar
  59. 59.
    Schacht E, Wilding I. Process for the preparation of azoand/or disulfide-containing polymers. International Patent WO 91/11175, 1991.Google Scholar
  60. 60.
    Sekigawa F, Onda Y. Coated solid medicament form having releasability in large intestine; tablet having core with chitosan as first coating layer and mixture of cellulose ethers and esters and cellulose ether esters as enteric coating, for delayed drug delivery. U.S. Patent 5,217,720, 1993.Google Scholar
  61. 61.
    Shah NH, Phuapradit W, Railkar A. Colon-targeted delivery system. U.S. Patent 5,482,718, 1996.Google Scholar
  62. 62.
    Siefke V, Weckenmann H, Bauer K. β-cyclodextrin matrix films for colon-specific drug delivery. Proc Int Sympos Controlled Release Bioact Mater 1993;20:182–3.Google Scholar
  63. 63.
    Siew LF, Newton JM. Suitability of mixed amylose/ethylcellulose films as a means of colonic drug delivery. Pharm Res 1997;14:S-658.Google Scholar
  64. 64.
    Steed KP, Hooper G, Monti N, et al. The use of pharmacoscintigraphy to focus the development strategy for a novel 5-ASA colon targeting system (“TIME CLOCK®” system). J Controlled Release 1997;49:115–22.CrossRefGoogle Scholar
  65. 65.
    Takaya T, Niwa K, Matsuda K, et al. Evaluation of pressure-controlled colon delivery capsule made of ethylcellulose. Proc Int Sympos Controlled Release Bioact Mater 1996;23:603–4.Google Scholar
  66. 66.
    Tozaki H, Komoike J, Tada C, et al. Chitosan capsules for colon-specific drug delivery: Improvement of insulin absorption from the rat colon. J Pharm Sci 1997;86:1016–21.PubMedCrossRefGoogle Scholar
  67. 67.
    Ueda S, Hata T, Asakura S, et al. Development of a novel drug release system, Time-controlled Explosion System (TES). I. Concept and design. J Drug Targeting 1994;2:35–44.CrossRefGoogle Scholar
  68. 68.
    Ueda S, Ibuki R, Kawamura A, et al. Development of a novel drug delivery system, Time-controlled Explosion System (TES). IV. In vivo drug release behavior. J Drug Targeting 1994;2:133–40.CrossRefGoogle Scholar
  69. 69.
    Van den Mooter G, Maris B, Samyn C, et al. Use of azo polymers for colon-specific drug delivery. J Pharm Sci 1997;86:1321–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Van den Mooter G, Offringa M, Kalala W, Samyn C, Kinget R. Synthesis and evaluation of new linear azo-polymers for colonic targeting. STP Pharma Sci 1995;5:36–40.Google Scholar
  71. 71.
    Van den Mooter G, Samyn C, Kinget R. Azo polymers for colon-specific drug delivery. Int J Pharm 1992;87:37–46.CrossRefGoogle Scholar
  72. 72.
    Van den Mooter G, Samyn C, Kinget R. In vivo evaluation of a colon-specific drug delivery system: An absorption study of theophylline from capsules coated with azo polymers in rats. Pharm Res 1995; 12:244–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Van den Mooter G, Samyn C, Kinget R. The relation between swelling properties and enzymatic degradation of azo polymers designed for colon-specific drug delivery. Pharm Res 1994;11:1737–41.PubMedCrossRefGoogle Scholar
  74. 74.
    Wakerly Z, Fell J, Attwood D, et al. Studies on amidated pectins as potential carriers in colonic drug delivery. J Pharm Pharmacol 1997;49:622–5.PubMedGoogle Scholar
  75. 75.
    Wakerly Z, Fell JT, Attwood D, et al. Pectin/ethylcellulose film coating formulations for colonic drug delivery. Pharm Res 1996;13:1210–2.PubMedCrossRefGoogle Scholar
  76. 76.
    Wakerly Z, Fell JT, Attwood D, et al. Studies on drug release from pectin/ethylcellulose film-coated tablets: a potential colonic delivery system. Int J Pharm 1997;153:219–24.CrossRefGoogle Scholar
  77. 77.
    Wilding IR, Davis SS, Pozzi F, et al. Enteric coated timed release systems for colonic targeting. Int J Pharm 1994;111:99–102.CrossRefGoogle Scholar
  78. 78.
    Yamada A, Wato T, Uchida N, et al. Oral pharmaceutical preparation released at intragastrointestinal tract. U.S. Patent 5,395,628, 1995.Google Scholar

Copyright information

© Urban & Vogel 1999

Authors and Affiliations

  1. 1.Institut für Pharmazeutische Technologie der UniversitätDüsseldorf

Personalised recommendations