Advertisement

Advances in Applied Clifford Algebras

, Volume 10, Issue 1, pp 107–158 | Cite as

Additional projective representations of the symmetric groups

  • A. Hegazi
  • S. El Saycd
Article
  • 34 Downloads

Keywords

Symmetric Group Main Diagonal Clifford Algebra Spin Representation Projective Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Schur I., Uber die Darstellung der endlichen Gruppen durch gebrochene lineare substitutionen,J. Reine Angew. Math.,127 20–50, (1904).MATHGoogle Scholar
  2. [2]
    Schur I., Chtersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare substitutionen,Journal für Reine und angewandte Mathematik,132 85–137, (1907).MATHCrossRefGoogle Scholar
  3. [3]
    Schur I., Uber die Darstellung der symmetrischen und der alternievender Gruppe durch gebrochene lineare substitutionen,Journal für reine and angewandte Methematik,139 155–250, (1911).MATHGoogle Scholar
  4. [4]
    Morris A. O., The spin representations of the symmetric group,Proc. London Math. Soc.,12 (3), 55–76 (1962).MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Morris A. O., A note on the multiplication of Hall functions,Journal London Math. Soc.,39, 481–488 (1964).MATHCrossRefGoogle Scholar
  6. [6]
    Nazarov M. L., An orthogonal basis of irreducible projective representations of the symmetric group,Functional Analysis and its Applications,22 66–68, (1988).MATHCrossRefGoogle Scholar
  7. [7]
    Nazarov M. L., Young’s orthogonal form of irreducible projective representations of the symmetric group,J. London Math. Soc.,42 (2), 437–451 (1990).MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Nazarov M. L., “Young’s symmetrizers for projective representations of the symmetric group”, RIMS 900-Koyoto Univ. Japan (1992).Google Scholar
  9. [9]
    James G. D., The representation theory of symmetric groups,Lecture Notes in Mathematics,682, Springer-Verlag, Berlin, (1978).MATHGoogle Scholar
  10. [10]
    Macdonald I. G., Symmetric Functions and Hall Polynomials, “Oxford Mathematical Monographs” Carendon Press, Oxford, (1979).Google Scholar
  11. [11]
    Molchanov V. F., “On matrix elements of irreducible representations of symmetric groups”, Vestnik, Moscow, Univ. 11, 52–57, (1986).Google Scholar
  12. [12]
    Stembridge J., Shifted tableaux and the projective representation of symmetric groups,Advances in Mathematics 74 87–134, (1989).MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser-Verlag AG 2000

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of SciencesMansoura UniversityMansouraEgypt

Personalised recommendations