Skip to main content
Log in

Developments in structural-acoustic optimization for passive noise control

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

Low noise constructions receive more and more attention in highly industrialized countries. Consequently, decrease of noise radiation challenges a growing community of engineers. One of the most efficient techniques for finding quiet structures consists in numerical optimization. Herein, we consider structural-acoustic optimization understood as an (iterative) minimum search of a specified objective (or cost) function by modifying certain design variables. Obviously, a coupled problem must be solved to evaluate the objective function. In this paper, we will start with a review of structural and acoustic analysis techniques using numerical methods like the finite- and/or the boundary-element method. This is followed by a survey of techniques for structural-acoustic coupling. We will then discuss objective functions. Often, the average sound pressure at one or a few points in a frequency interval accounts for the objective function for interior problems, wheareas the average sound power is mostly used for external problems. The analysis part will be completed by review of sensitivity analysis and special techniques. We will then discuss applications of structural-acoustic optimization. Starting with a review of related work in pure structural optimization and in pure acoustic optimization, we will categorize the problems of optimization in structural acoustics. A suitable distinction consists in academic and more applied examples. Academic examples iclude simple structures like beams, rectangular or circular plates and boxes; real industrial applications consider problems like that of a fuselage, bells, loudspeaker diaphragms and components of vehicle structures. Various different types of variables are used as design parameters. Quite often, locally defined plate or shell thickness or discrete point masses are chosen. Furthermore, all kinds of structural material parameters, beam cross sections, spring characteristics and shell geometry account for suitable design modifications. This is followed by a listing of constraints that have been applied. After that, we will discuss strategies of optimization. Starting with a formulation of the optimization problem we review aspects of multiobjective optimization, approximation concepts and optimization methods in general. In a final chapter, results are categorized and discussed. Very often, quite large decreases of noise radiation have been reported. However, even small gains should be highly appreciated in some cases of certain support conditions, complexity of simulation, model and large frequency ranges. Optimization outcomes are categorized with respect to objective functions, optimization methods, variables and groups of problems, the latter with particular focus on industrial applications. More specifically, a close-up look at vehicle panel shell geometry optimization is presented. Review of results is completed with a section on experimental validation of optimization gains. The conclusions bring together a number of open problems in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Abspoel, L. F. P. Etman, J. Vervoort, R. A. van Rooij, A. J. G. Schoofs, and J. E. Rooda (2001). Simulation based optimization of stochastic systems with integer design variables by sequential multipoint linear approximation,Structural and Multidisciplinary Optimization,22, 125–138.

    Article  Google Scholar 

  2. H. M. Adelman and R. T. Haftka (1986). Sensitivities for discrete structural systems,AIAA Journal,24, 823–832.

    Article  Google Scholar 

  3. R. A. Adey, S. M. Niku, J. Baynham, and P. Burns (1995). Predicting acoustic contributions and sensitivity, application to vehicle structures. In C. A. Brebbia (ed),Computational Acoustics and its Environmental Applications, pages 181–188. Computational Mechanics Publications.

  4. S. Ahmad and P. K. Banerjee (1986). Free vibration analysis by BEM using particular integrals.ASCE Journal Engineering Mechanics,112, 682–695.

    Article  Google Scholar 

  5. A. Ali, C. Rajakumar, and S. M. Yunus (1995). Advances in acoustic eigenvalue analysis using boundary element method.Computers and Structures,56(5), 837–847.

    Article  MATH  Google Scholar 

  6. S. Amini, C. Ke, and P. J. Harris (1990). Iterative solution of boundary element equations for the exterior helmholtz problem.Journal of Vibration and Acoustics,112, 257–262. April.

    Article  Google Scholar 

  7. S. Amini and N. D. Maines (1998). Preconditioned Krylov subspace methods for boundary element solution of the Helmholtz equation,International Journal for Numerical Methods in Engineering,41, 875–898.

    Article  MATH  MathSciNet  Google Scholar 

  8. M. A. Arslan and P. Hajela (2001). Use of counterpropagation neural networks to enhance the concurrent subspace optimization strategy.Engineering Optimization,33, 327–349.

    Article  Google Scholar 

  9. R. J. Astley (1987). A comparative note on the effects of local versus bulk reaction models for air moving ducts lined on all sides.Journal of Sound and Vibration,117(1), 191–197.

    Article  Google Scholar 

  10. R. J. Astley (1998). Finite elements in acoustics. InSound and Silence: Setting the Balance—Proceedings of the INTERNOISE 98, volume 1, pages 3–17, Christchurch. New Zealand Acoustical Society Inc.

    Google Scholar 

  11. R. J. Astley (1998). Mapped spheroidal elements for unbounded wave problems.International Journal for Numerical Methods in Engineering,41, 1235–1254.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. J. Astley, J.-P. Coyette, and L. Cremes (1998). Three dimensional wave envelope elements of variable order for acoustical radiation and scattering. Part ii: Formulation in the time domain.Journal of the Acoustical Society of America,103, 64–72.

    Article  Google Scholar 

  13. R. J. Astley and A. Cummings (1987). A finite element scheme for attenuation in ducts lined with porous material: Comparison, with experiment,Journal of Sound and Vibration,116, 239–263.

    Google Scholar 

  14. R. J. Astley, G. J. Macaulay, and J.-P. Coyette (1994). Mapped wave envelope elements for acoustical radiation and scattering,Journal of Sound and Vibration,170, 97–118.

    Article  MATH  Google Scholar 

  15. R. J. Astley, G. J. Macaulay, J.-P. Coyette, and L. Cremers (1998). Three dimensional wave envelope elements of variable order for acoustical radiation and scattering. Part i: Formulation in the frequency domain.Journal of the Acoustical Society of America,103, 49–63.

    Article  Google Scholar 

  16. T. W. Athan and P. Y. Papalambros (1996). A note on weighted criteria methods for compromise solutions in multi-objective optimization.Engineering Optimization,27, 155–176.

    Article  Google Scholar 

  17. K. E. Atkinson (1997).The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, 1st edition.

  18. T. Back (1996).Evolutionary algorithms in theory and practice. Oxford University Press.

  19. R. S. Ballinger, E. L. Peterson, and D. L. Brown (1991). Design optimization of a vibration exciter head exapander.Sound and Vibration,25, 18–25.

    Google Scholar 

  20. P. K. Banerjee and D. P. Henry (1988). BEM formulations for body forces using particular integrals. In M. Tanaka and T. A. Cruse, editors,Boundary Element Methods in Applied Mechanics, Proceedings of the First Joint Japan/US Symposium on Boundary Element Methods, pages 25–34, Oxford, Pergamon Press.

    Google Scholar 

  21. J.-F. M. Barthelemy, and R. T. Haftka (1993). Approximation concepts for optimum structural design—a review.Structural Optimization,5(3), 129–144.

    Article  Google Scholar 

  22. M. Bassaou and P. Siarry (2001). A genetic algorithm with real-value coding to optimize multimodal continuous functions.Structural and Multidisciplinary Optimization,23, 63–74.

    Article  Google Scholar 

  23. K.-J. Bathe (1982).Finite Element Procedures in Engineering Analysis. Prentice Hall, Englewood Cliffs.

    Google Scholar 

  24. K.-J. Bathe, C. Nitikitpaiboon, and X. Wang (1995). A mixed displacement-based finite element formulation for acoustic fluid-structure interaction.Computers and Structures,56, 225–237.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Battiti and G. Tecchiolli (1996). The continuous reactive tabu search: Blending combinatorial optimization and stochastic search for global optimization.Annals of Operations Research,63, 153–188.

    Article  MATH  Google Scholar 

  26. T. Bauer and G. Henneberger (1999). Three-dimensional calculation and optimization of the acoustic field of the induction furnace caused by electromagnetic forces.IEEE Transactions on Magnetics,35(3), 1598–1601, May.

    Article  Google Scholar 

  27. A. D. Belegundu (1985). Lagrangian approach to design sensitivity analysis.Journal of Engineering Mechanics,111, 680–695.

    Google Scholar 

  28. A. D. Belegundu, R. R. Salagame, and G. H. Koopmann (1994). A general optimization strategy for sound power minimization.Structural Optimization,8(2–3), 113–119.

    Article  Google Scholar 

  29. M. P. Bendsoe (1995).Optimization of Structural Topology, Shape and material. Springer Verlag, Berlin Heidelberg New York.

    Google Scholar 

  30. G. W. Benthien and H. A. Schenck (1991). Structural-acoustic coupling. In R. D. Ciskowski and C. A. Brebbia, editors,Boundary Elements in Acoustics, chapter 6, pages 109–129. Computational Mechanics Publications and Elsevier Applied Science.

  31. A. Bermudez, P. Gamallo, L. Hervella-Nieto, and R. Rodriguez (2002). Finite element analysis of pressure formulation of the elestoacoustic problem.Numerische Mathematik. In print.

  32. A. Bermudez and R. Rodriguez (1994). Finite element computations of the vibration modes of a fluid-solid system.Computer Methods in Applied Mechanics and Engineering,119, 355–370.

    Article  MATH  MathSciNet  Google Scholar 

  33. A. Bermudez and R. Rodriguez (2001). Analysis of finite element method for pressure/potential formulation of elastoacoustic spectral problems.Mathematics of Computation,71(238), 537–552.

    Article  MathSciNet  Google Scholar 

  34. R. J. Bernhard (1985). A finite element method for synthesis of acoustical, shapes,Journal of Sound and Vibration,98(1), 55–65.

    Article  MathSciNet  Google Scholar 

  35. R. J. Bernhard (1986). Shape optimization of reactive mufflers,Noise Control Engineering Journal,27(1), 10–17.

    Article  MathSciNet  Google Scholar 

  36. R. J. Bernhard and D. C. Smith (1991). Acoustic design sensitivity analysis. In R. D. Ciskowski and C. A. Brebbia, editors,Boundary Elements in Acoustics, chapter 4, pages 77–93. Computational Mechanics Publications and Elsevier Applied Science.

  37. R. J. Bernhard and S. Takeo (1988). A finite element procedure for design of cavity acoustical treatments.Journal of the Acoustical Society of America,83, 2224–2230.

    Article  Google Scholar 

  38. A. N. Bespalov (1999). Cost-effective solution of the boundary integral equations for 3d Maxwell problems.Russian Journal of Numerical Analysis and Mathematical Modelling,14(5), 403–428.

    MATH  MathSciNet  Google Scholar 

  39. P. Bettess (1992).Infinite elements. Penshaw Press, Sunderland.

  40. G. L. Bilbro and W. E. Snyder (1991). Optimization of functions with many minima.IEEE Transactions on Systems, Man, and Cybernetics,21 (4), 840–849.

    Article  MathSciNet  Google Scholar 

  41. F. Bitsie and R. J. Bernhard (1998). Sensitivity calculations for structural-acoustic EFEM predictions.Noise Control Engineering Journal,46(3), 91–96.

    Article  Google Scholar 

  42. V. B. Bokil and U. S. Shirahatti (1994). A new modal technique for sound-structure interaction problems.Journal of Sound and Vibration,175, 23–41.

    Article  Google Scholar 

  43. G. V. Borgiotti (1990). The power radiated by a vibrating body in an acoustic fluid and its determination from acoustic measurements.Journal of the Acoustical Society of America,88(4), 1884–1893.

    Article  Google Scholar 

  44. M. J. Box (1965). A new method of constrained optimization and comparison with other methods.Computer Journal,8(1), 42–52.

    MATH  MathSciNet  Google Scholar 

  45. J. Branke, T. Kaußler and H. Schmeck (2001). Guidance in evolutionary multi-objective optimization.Advances in Engineering Software,32, 499–507.

    Article  MATH  Google Scholar 

  46. C. A. Brebbia, J. J. d. Rego Silva, and P. W. Patridge (1991). Computational formulation. In R. D. Ciskowski and C. A. Brebbia, editors,Boundary Elements in Acoustics, chapter 2, pages 13–60. Computational Mechanics Publications and Elsevier Applied Science.

  47. J. Bretl (1989). Prediction and reduction of in-vehicle noise due to road irregularity and other inputs.SAE-paper 890100, pages 207–212.

  48. M. Bruyneel, P. Duysinx, and C. Fleury (2002). A family of mma approximations for structural optimization.Structural and Multidisciplinary Optimization,24, 263–276.

    Article  Google Scholar 

  49. R. T. Bührmann (2000). The minimization of noise diffraction over an irregularly shaped wall. InInternational Workshop on Multidisciplinary Design Optimization, pages 37–49, Pretoria, South Africa, August.

  50. D. S. Burnett (1994). A three dimensional acoustic infinite element based on a prolate spheroidal multipole expansion.Journal of the Acoustical Society of America,96, 2798–2816.

    Article  MathSciNet  Google Scholar 

  51. D. S. Burnett and R. L. Holford (1997). 3−d acoustic infinite element based on a oblate spheroidal multipole expansion. United States Patent 5604893.

  52. D. S. Burnett and R. L. Holford (1997). 3−d acoustic infinite element based on a prolate spheroidal multipole expansion. United States Patent 5604891.

  53. D. S. Burnett and R. L. Holford (1998). An ellipsoidal acoustic infinite element.Computer Methods in Applied Mechanical Engineering,164, 49–76.

    Article  MATH  MathSciNet  Google Scholar 

  54. D. S. Burnett and R. L. Holford (1998). Prolate and oblate spheroidal acoustic infinite elements.Computer Methods in Applied Mechancal Engineering,158, 117–141.

    Article  MATH  MathSciNet  Google Scholar 

  55. A. J. Burton and G. F. Miller (1971). The application of integral equation methods to the numerical solution of some exterior boundary-value problems.Proceedings of the Royal Society of London,323, 201–220.

    Article  MATH  MathSciNet  Google Scholar 

  56. C. Cabos and F. Ihlenburg (2002). Vibrational analysis of ships with coupled finite and boundary elements.Journal of Computational Acoustics. in print.

  57. G. Chandler (1979).Superconvergence of numerical solutions to second kind integral equations. Phd-dissertation, Australian National University, Canberra.

    Google Scholar 

  58. F. Chatelin and R. Lebbar (1981). The iterated projection solution for the Fredholm integral equation of the second kind.Journal of the Australian Mathematical Society, Series B,22, 439–451.

    Article  MATH  MathSciNet  Google Scholar 

  59. R. Chelouah and P. Siarry (2000). A continuous genetic algorithm designed for the global optimization of multimodal functions.Journal of Heuristics,6(2), 191–213.

    Article  MATH  MathSciNet  Google Scholar 

  60. R. Chelouah and P. Siarry (2000). Tabu search applied to global optimization.European Journal of Operational Research,123(2), 256–270.

    Article  MATH  MathSciNet  Google Scholar 

  61. J. T. Chen, M. H. Chang, K. H. Chen and I. L. Chen (2002). Boundary collocation method for acoustic eigenanalysis of three-dimensional cavities using radial basis function.Computational Mechanics,29, 392–408.

    Article  MATH  Google Scholar 

  62. P. T. Chen (1997). Vibrations of submerged structures in a heavy acoustic medium using radiation modes.Journal of Sound and Vibration,208(1), 55–71.

    Article  Google Scholar 

  63. P. T. Chen and J. H. Ginsberg (1995). Complex power, reciprocity, and radiation modes for submerged bodies.Journal of the Acoustical Society of America,98(6), 3343–3351.

    Article  Google Scholar 

  64. Z. S. Chen, G. Hofstetter and H. A. Mang (1993). A 3d boundary element method for determination of acoustic eigenfrequencies considering admittance boundary conditions.Journal of Computational Acoustics,1(4), 455–468.

    Article  Google Scholar 

  65. Z. S. Chen, G. Hofstetter, and H. A. Mang (1997). A symmetric Galerkin formulation of the boundary element method for acoustic radiation and scattering.Journal of Computational Acoustics,5(2), 219–241.

    Article  Google Scholar 

  66. Z. S. Chen, G. Hofstetter, and H. A. Mang (1998). A Galerkin-type BE-FE formulation for elasto-acoustic coupling.Computer methods in applied mechanics and engineering,152, 147–155.

    Article  MATH  Google Scholar 

  67. K. K. Choi, I. Shim, J. Lee, and H. T. Kulkarni (1993). Design sensitivity analysis of dynamic frequency responses of acousto-elastic built-up structures. In G. I. N. Rozvany, editor,Optimization of Large Structural Systems, volume 1, pages 329–343. Kluwer Academic Publishers.

  68. K. K. Choi, I. Shim, and S. Wang (1997). Design sensitivity analysis of structure-induced noise and vibration.Journal of Vibration and Acoustics,119, 173–179, April.

    Article  Google Scholar 

  69. S. T. Christensen and N. Olhoff (1998). Shape optimization of a loudspeaker diaphragm with respect to sound directivity properties.Control and Cybernetics,27(2), 177–198.

    MATH  MathSciNet  Google Scholar 

  70. S. T. Christensen, S. V. Sorokin, and N. Olhoff (1998). On analysis and optimization in structural acoustics—Part i: Problem formulation and solution techniques.Structural Optimization,16, 83–95.

    Google Scholar 

  71. S. T. Christensen, S. V. Sorokin, and N. Olhoff (1998). On analysis and optimization in structural acoustics—Part ii: Exemplifications for axisymmetric structures.Structural Optimization,16, 96–107.

    Google Scholar 

  72. R. D. Ciskowski and C. A. Brebbia, editors (1991).Boundary Elements in Acoustics. Computational Mechanics Publications and Elsevier Applied Science, Southampton Boston.

    Google Scholar 

  73. L.-M. Cleon and A. Willaime (2000). Aero-acoustic optimization of the fans and cooling circuit on SNCF’s X 72500 railcar.Journal of Sound and Vibration,231 (3), 925–933.

    Article  Google Scholar 

  74. E. W. Constans, A. D. Belegundu, and G. H. Koopmann (1998). Design approach for minimizing sound power from vibrating shell structures.AIAA Journal,36(2), 134–139.

    Article  MATH  Google Scholar 

  75. E. W. Constans, G. H. Koopmann, and A. D. Belegundu (1998). The use of modal tailoring to minimize the radiated sound power of vibrating shells: Theory and experiment.Journal of Sound and Vibration,217 (2), 335–350.

    Article  Google Scholar 

  76. A. Corana, M. Marchesi, C. Martini, and S. Ridella (1987). Minimizing multi-modal functions of continuous variables with the simulated annealing algorithm.ACM Transactions on Mathematical Software,13, 262–280.

    Article  MATH  MathSciNet  Google Scholar 

  77. J. P. Coyette and K. R. Fyfe (1990). An improved formulation for the acoustic eigenmode extraction from boundary element models.Journal of Vibration and Acoustics,112, 392–397.

    Article  Google Scholar 

  78. J.-P. Coyette, C. Lecomte, J.-L. Migeot, J. Blanche, M. Rochette, and G. Mirkovic (1999). Calculation of vibro-acoustic frequency response functions using a single frequency boundary element solution and a Padé expansion.Acustica,85(3), 371–377.

    Google Scholar 

  79. J.-P. Coyette, H. Wynendaele, and M. K. Chargin (1993). A global acoustic sensitivity tool for improving structural design.Proceedings-SPIE The International Society for Optical Engineering, Issue 1923, pages 1389–1394.

  80. A. Craggs (1971). The transient response of a coupled plate-acoustic system using plate and acoustic finite elements.Journal of Sound and Vibration,15(4), 509–528.

    Article  Google Scholar 

  81. R. R. Craig and C. J. Chang (1976). Free-interface methods of substructre coupling for dynamic analysis.AIAA Journal,14(11), 1633–1635.

    Article  Google Scholar 

  82. S. P. Crane, K. A. Cunefare, S. P. Engelstad, and E. A. Powell (1997). Comparison of design optimization formulations for minimization of noise transmission in a cylinder.Journal of Aircraft,34(2), 236–243.

    Article  Google Scholar 

  83. L. Cremers, K. R. Fyfe and P. Sas (2000). A variable order infinite element for multi-domain boundary element modelling of acoustic radiation and scattering.Applied Acoustics,59, 185–220.

    Article  Google Scholar 

  84. L. Cremers, P. Guisset, L. Meulewaeter, and M. Tournour (2000). A computer-aided engineering method for predicting the acoustic signature of vibrating structures using discrete models. Great Britain Patent No. GB 2000-16259.

  85. K. A. Cunefare (1991). The minimum multi-modal radiation efficiency of baffled finite beams.Journal of the Acoustical Society of America,90, 2521–2529.

    Article  Google Scholar 

  86. K. A. Cunefare, S. P. Crane, S. P. Engelstad, and E. A. Powell (1999). Design minimization of noise in stiffened cylinders due to tonal external excitation.Journal of Aircraft,36(3), 563–570.

    Article  Google Scholar 

  87. K. A. Cunefare and M. N. Currey (1994). On the exterior acoustic radiation modes of structures.Journal of the Acoustical Society of America,96(4), 2302–2312.

    Article  Google Scholar 

  88. K. A. Cunefare, M. N. Currey, M. E. Johnson, and S. J. Elliott (2001). The radiation efficiency grouping of free-space acoustic radiation modes.Journal of the Acoustical Society of America,109(1), 203–215.

    Article  Google Scholar 

  89. K. A. Cunefare and G. H. Koopmann (1992). Acoustic design sensitivities for structural radiators.Journal of Vibration and Acoustics,114, 178–186, April.

    Article  Google Scholar 

  90. M. N. Currey and K. A. Cunefare (1995). The radiation modes of baffled finite plates.Journal of the Acoustical Society of America,98(3), 1570–1580.

    Article  Google Scholar 

  91. D. Cvijovic and J. Klinowski (1995). Taboo search. An approach to the multiple minima problem.Science,667, 664–666.

    Article  MathSciNet  Google Scholar 

  92. F. Dirschmid, H. Troidl, A. Kunert, S. Dillinger, O. von Estorff, E. Negele, and M. Stowasser (1996). Akustische Optimierung von Getriebegehäusen. InBerechnung und Simulation im Fahrzeugbau, pages 633–651. VDI-Report 1283.

  93. S. J. Elliott, Book review of [180] (1998).Journal of Sound and Vibration,214(5), 987–989.

    Article  Google Scholar 

  94. S. P. Engelstad, K. A. Cunefare, E. A. Powell, and V. Biesel (2000). Stiffener shape design to minimize interior noise.Journal of Aircraft,37(1), 165–171.

    Article  Google Scholar 

  95. H. Eschenauer, J. Koski, and A. Oscycka (Eds) (1990).Multicriteria Design Optimization Procedures and Applications. Springer Verlag.

  96. H. A. Eschenauer and N. Olhoff (2001). Topology optimization of continuum structures: A review.Applied Mechanics Reviews,54, 331–389.

    Article  Google Scholar 

  97. B. Esping (1995). Design optimization as an engineering tool.Structural Optimization,10, 137–152.

    Article  Google Scholar 

  98. L. F. P. Etman (1997).Optimization of Multibody Systems using Approximation Concepts. Dissertation, Technische Universiteit Eindhoven.

  99. G. C. Everstine (1981). A symmetric potential formulation for fluid-structure interaction.Journal of Sound and Vibration,79, 157–160.

    Article  Google Scholar 

  100. G. C. Everstine and F. M. Henderson (1990). Coupled finite element/boundary element approach for fluid structure interaction.Journal of the Acoustical Society of America,87(5), 1938–1947.

    Article  Google Scholar 

  101. G. M. Fadel, M. F. Riley, and J. M. Barthelemy (1990). Two-point exponential approximation method for structural optimization.Structural Optimization,2, 117–124.

    Article  Google Scholar 

  102. J. B. Fahnline and G. H. Koopmann (1995). Design for a high-efficiency sound source based on constrained optimization procedures.Acoustical Physics,41(5), 700–706.

    Google Scholar 

  103. J. B. Fahnline and G. H. Koopmann (1996). A lumped parameter model for the acoustic power output from a vibrating structure.Journal of the Acoustical Society of America,100(6), 3539–3547.

    Article  Google Scholar 

  104. J. B. Fahnline and G. H. Koopmann (1997). Numerical implementation of the lumped parameter model for the acoustic power output from a vibrating structure.Journal of the Acoustical Society of America,102(1), 179–192.

    Article  Google Scholar 

  105. G. R. Feijoo, M. Malhotra, A. A. Oberai, and P. M. Pinsky (2001). Shape sensitivity calculations for exterior acoustics problems.Engineering computations,18(3/4), 376–391.

    Article  MATH  Google Scholar 

  106. K. A. Fisher (1995). The application of genetic algorithms to optimising the design of an engine block for low noise. InGenetic Algorithms in Engineering Systems: Innovations and Applications, pages 18–22. IEEE Conference Publication No. 414.

  107. D. L. Flanigan and S. G. Borders (1984). Application of acoustic modeling methods for vehicle boom analysis.SAE-paper 840744, pages 207–217.

  108. J. W. Free, A. R. Parkinson, G. R. Bryce, and R. J. Balling (1987). Approximation of computationally expensive and noisy functions for constrained nonlinear optimization.Journal of Mechanisms, Transmissions, and Automation in Design,109, 528–532.

    Article  Google Scholar 

  109. R. Freymann (1999). Sounddesign und Akustikentwicklung im Automobilbau. InMaschinenakustik ’99—Entwicklung lärm- und schwingungsarmer Produkte, pages 47–64 VDI-Report 1491.

  110. R. Freymann, R. Stryczek, and H. Spannheimer (1995). Dynamic response of coupled structural-acoustic systems.Journal of Low Frequency Noise and Vibration,14(1), 11–32.

    Google Scholar 

  111. M. I. Frishwell and J. E. Mottershead (1995).Finite element model updating in Structural Dynamics. Kluwer Academic Publishers, Dordrecht Boston London.

    Google Scholar 

  112. D. Fritze, S. Marburg, and H.-J. Hardtke (2002). Reducing radiated sound power of plates and shallow shells by local modification of geometry.Acustica/Acta Acustica. in print.

  113. A. A. Gates and M. L. Accorsi (1993). Automatic shape optimization of three-dimensional shell structures with large shape changes.Computers and Structures,49(1), 167–178.

    Article  MATH  Google Scholar 

  114. L. Gaul, M. Wagner, and W. Wenzel (1998). Efficient field point evaluation by combined direct and hybrid boundary element methods.Engineering Analysis with Boundary Elements,21(3), 215–222.

    Article  MATH  Google Scholar 

  115. L. Gaul, M. Wagner, W. Wenzel, and N. A. Dumont (2001). Numerical treatment of acoustical problems with the hybrid boundary element method.International Journal of Solids and Structures,38, 1871–1888.

    Article  MATH  Google Scholar 

  116. L. Gaul and W. Wenzel (2002). A coupled symmetric BE-FE method for acoustic fluid-structure interaction.Engineering Analysis with Boundary Elements,26(7), 629–636.

    Article  MATH  Google Scholar 

  117. K. Gerdes (1998). The conjugated versus the unconjugated infinite element method for the Helmholtz equation in exterior domains.Computer Methods in Applied Mechanical Engineering,152, 125–145.

    Article  MATH  MathSciNet  Google Scholar 

  118. K. Giebermann (2001). Multilevel representations of boundary integral operators.Computing,67, 183–207.

    Article  MATH  MathSciNet  Google Scholar 

  119. M. Ginsberg (2001). Influences on the solution process for large, numeric-intensive automotive simulations.Lecture Notes in Computer Science,2073, 1189–1198.

    Article  Google Scholar 

  120. D. Givoli (1992).Numerical methods for problems in infinite domains. Elsevier Science, Amsterdam.

    MATH  Google Scholar 

  121. D. Givoli (1999). Recent advances in the DtN FE-method.Archives of Computational Methods in Engineering,6(2), 71–116.

    Article  MathSciNet  Google Scholar 

  122. D. Givoli and T. Demchenko (2000). A boundary-perturbation finite element approach for shape optimization.International Journal for Numerical Methods in Engineering,47, 801–819.

    Article  MATH  Google Scholar 

  123. W. L. Goffe, G. D. Ferrier, and J. Rogers (1994). Global optimization of statistical functions with simulated annealing.Journal of Econometrics,60, 65–99.

    Article  MATH  Google Scholar 

  124. R. V. Grandhi (1993). Structural optimization with frequency constraints.AIAA Journal,31(12), 2296–2303.

    Article  MATH  Google Scholar 

  125. L. Greengard, J. Huang, V. Rokhlin, and S. Wandzura (1998). Accelerating fast multipole methods for the Helmholtz equation at low frequencies.IEEE Computational Science and Engineering,5(3), 32–38.

    Article  Google Scholar 

  126. M. Gustafsson and S. He (2000). An optimization approach to multi-dimensional time domain acoustic inverse problems.Journal of the Acoustical Society of America,108(4), 1548–1556.

    Article  MathSciNet  Google Scholar 

  127. A. Habbal (1998). Nonsmooth shape optimization applied to linear acoustics.SIAM Journal for Optimization,8(4), 989–1006.

    Article  MATH  MathSciNet  Google Scholar 

  128. D. Hackenbroich (1988). Reduktion des Innengeräusches bei Nutzfahrzeugen durch rechnerische Optimierung des Mündungsgeräusches von Motoransauganlagen. InBerechnung und Simulation im Fahrzeugbau, pages 631–654, VDI-Report 669.

  129. R. Haftka and Z. Gürdal (1992).Elements of Structural Optimization. Kluwer Academic Publishers, Dortrecht.

    MATH  Google Scholar 

  130. R. T. Haftka and H. M. Adelman (1989). Recent developments in structural sensitivity analysis.Structural Optimization 1, 137–151.

    Article  Google Scholar 

  131. R. T. Haftka and R. V. Grandhi (1986). Structural shape optimization—a survey.Computer Methods in Applied Mechanical Engineering,57, 91–106.

    Article  MATH  MathSciNet  Google Scholar 

  132. R. T. Haftka, J. Nachlas, L. Watson, T. Rizzo, and R. Desai (1987). Two-point constraint approximation in structural optimization.Computer Methods in Applied Mechanical Engineering,60, 289–301.

    Article  MATH  Google Scholar 

  133. I. Hagiwara, Z.-D. Ma, A. Arai, and K. Nagabuchi (1991). Reduction of vehicle interior noise using structural-acoustic sensitivity analysis methods.SAE Technical Paper Series No. 910208. 10 pages.

  134. S. R. Hahn and A. A. Ferri (1997). Sensitivity analysis of coupled structural-acoustic problems using perturbation techniques.Journal of the Acoustical Society of America,101(2), 918–924.

    Article  Google Scholar 

  135. P. Hajela (1992). Genetic search strategies in multicriterion optimal design.Structural Optimization,4, 99–107.

    Article  Google Scholar 

  136. P. Hajela (1999). Nongradient methods in multidisciplinary design optimization—status and potential.Journal of Aircraft,36(1), 255–265.

    Article  Google Scholar 

  137. P. Hajela and J. Yoo (1996). Constraint handling in genetic search using expression strategies.AIAA Journal,34(12), 2414–2420.

    Article  MATH  Google Scholar 

  138. R. A. Hall (1994). Noise optimization of engine structures using response surface methods.Institution of Mechanical Engineers Conference Publications,3, 79–87.

    Google Scholar 

  139. S. A. Hambric (1995). Approximation techniques for broad-band acoustic radiated noise design optimization problems.Journal of Vibration and Acoustics,117(1), 136–144, January.

    Article  Google Scholar 

  140. S. A. Hambric (1996). Sensitivity calculations for broad-band acoustic radiated noise design optimization problems.Journal of Vibration and Acoustics,118(7), 529–532, July.

    Article  Google Scholar 

  141. M. Hamdi, Y. Ousset, and G. Verchery (1978). A displacement method for the analysis of vibrations of coupled fluid-structure systems.International Journal for Numerical Methods in Engineering,13, 139–150.

    Article  MATH  Google Scholar 

  142. U. Hänle and J. Sielaff (1998). Eine Berechnungstrategie zur Auslegung des komfortrelevanten Karosserie-Strukturverhaltens. InBerechnung und Simulation im Fahrzeugbau, pages 733–750. VDI-Report, 1411.

  143. I. Harari, K. Grosh, T. J. R. Hughes, M. Malhotra, P. M. Pinsky, J. R. Stewart, and L. L. Thompson (1996) Recent development in finite element methods for structural acoustics.Archives of Computational Methods in Engineering,3(2–3), 131–309.

    Article  MathSciNet  Google Scholar 

  144. I. Harari and T. J. R. Hughes (1992). A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics.Computer Methods in Applied Mechanics and Engineering,97, 77–102.

    Article  MATH  MathSciNet  Google Scholar 

  145. L. Hermans and M. Brughmans (2000). Enabling vibro-acoustic optimization in a superelement environment: A case study.Proceedings-SPIE The International Society for Optical Engineering, Issue 4062//PT2, pages 1146–1152.

  146. F. Hibinger (1998).Numerische Strukturoptimierung in der Maschinenakustik Dissertation, Technische Universität Darmstadt.

  147. E. Hinton, M. Özakca, and V. R. Rao (1995). Free vibration analysis and shape optimization of variable thickness plates, prismatic folded plates and curved shells, Part ii: Shape optimization.Journal of Sound and Vibration,181(4), 567–581.

    Article  Google Scholar 

  148. R. Hooke and T. A. Jeeves (1961). Direct search solution of numerical and statistical problems.Journal of the Association of Computing Machinery,8, 212–229.

    MATH  Google Scholar 

  149. Y.-L. Hsu (1994). A review of structural shape optimization.Computers in Industry,26, 3–13.

    Article  Google Scholar 

  150. G. Hübner (1991). Eine Betrachtung zur Physik der Schallabstrahlung.Acustica,75, 130–144.

    Google Scholar 

  151. G. Hübner and A. Gerlach (1999).Schalleistungsbestimmung mit der DFEM, volume FB 846 ofSchriftenreihe der Bundesanstalt für Arbeitsmedizin (Forschung). Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Dortmund Berlin.

    Google Scholar 

  152. G. Hübner, J. Messner, and E. Meynerts (1986),Schalleistungsbestimmung mit der Direkten Finite Elemente Methode, volume Fb 479 ofSchriftenreihe der Bundesanstalt für Arbeitsmedizin (Forschung). Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Dortmund Berlin.

    Google Scholar 

  153. F. Ihlenburg (1998).Finite Element Analysis of Acoustic Scattering, volume 132 ofApplied Mathematical Sciences. Springer Verlag, Berlin Heidelberg New York.

    Google Scholar 

  154. M. Imregun and W. J. Visser (1991). A review of model updating technique.The Shock and Vibration Digest,23, 9–20.

    Article  Google Scholar 

  155. S.-I. Ishiyama, M. Imai, S.-I. Maruyama, H. Ido, N. Sugiura, and S. Suzuki (1988). The application of ACOUST/BOOM—A noise level prediction and reduction code.SAE-paper 880910, pages 195–205.

  156. A. H. Jawed and A. J. Morris (1984). Approximate higher-order sensitivities in structural design.Engineering Optimization,7, 121–142.

    Article  Google Scholar 

  157. A. H. Jawed and A. J. Morris (1985). Higher-order updates for dynamic responses in structural optimization.Computer Methods in Applied Mechanical Engineering,49, 175–201.

    Article  MATH  Google Scholar 

  158. R. Jeans and I. C. Mathews (1991). Use of Lanczoz vectors in structural acoustic problems.ASME Applied Mechanics Division (AMD),128, 101–112. also:NCA Vol. 12.

    Google Scholar 

  159. R. A. Jeans and I. C. Mathews (1990). Solution of fluid-structure interaction problems using a coupled finite element and variational boundary element technique.Journal of the Acoustical Society of America,88(5), 2459–2466.

    Article  Google Scholar 

  160. C. S. Jog (2002). Reducing radiated sound power by minimizing the dynamic compliance. In[238], pages 215–236.

  161. C. S. Jog (2002). Topology design of structures subjected to periodic load.Journal of Sound and Vibration,253(3), 687–709.

    Article  Google Scholar 

  162. C. S. Jog, R. B. Haber, and M. P. Bendsœ (1994). Topology design with optimized self-adaptive materials.International Journal for Numerical Methods in Engineering,37, 1323–1350.

    Article  MATH  MathSciNet  Google Scholar 

  163. D. S. Jones (1974). Integral equations for the exterior acoustic problem.Quarterly Journal of Mechanics and Applied Mathematics,27, 129–142.

    Article  MATH  MathSciNet  Google Scholar 

  164. P. Juhl (2000). Iterative solution of the direct collocation BEM equations. InProceedings of the 7th International Congress on Sound and Vibration., volume IV, pages 2077–2084, Garmisch-Partenkirchen, Germany.

  165. J. H. Kane, S. Mao, and G. C. Everstine (1991). A boundary element formulation for acoustic shape sensitivity analysis.Journal of the Acoustical Society of America,90(1), 561–573, July.

    Article  Google Scholar 

  166. S. W. Kang and J. M. Lee (2000). Free vibration analysis of arbitrarily shaped two-dimensional cavities by the method of point matching.Journal of the Acoustical Society of America,107(3), 1153–1160.

    Article  MathSciNet  Google Scholar 

  167. E. M. Kasprzak and K. E. Lewis (2001). Pareto analysis in multiobjective optimization using the collinearity theorem and scaling method.Structural and Multidisciplinary Optimization,22, 208–218.

    Article  Google Scholar 

  168. A. J. Keane (1995). Passive vibration control via unusual geometries: The application of genetic algorithm optimization to structural design.Journal of Sound and Vibration,185(3), 441–453.

    Article  MATH  MathSciNet  Google Scholar 

  169. J. B. Keller and D. Givoli (1989). Exact nonreflecting boundary conditions.Journal of Computational Physics,82, 172–192.

    Article  MATH  MathSciNet  Google Scholar 

  170. P. H. L. Kessels (2001).Engineering toolbox for structural-acoustic design. Applied to MRI-scanners. Dissertation, Technische Universiteit Eindhoven.

  171. S. Kibsgaard (1992). Sensitivity analysis—the basis for optimization.International Journal for Numerical Methods in Engineering,34, 901–932.

    Article  Google Scholar 

  172. L. Kiefling and G. C. Feng (1976). Fluid-structure finite element vibration analysis.AIAA Journal,14(2), 199–203.

    Article  MATH  MathSciNet  Google Scholar 

  173. R. K. Kincaid, M. Weber, and J. Sobieszczanski-Sobieski (2001). Performance of a bell-curve based evolutionary optimization algorithm.Structural and Multidisciplinary Optimization,21, 261–271.

    Article  Google Scholar 

  174. S. Kirkpatrick, C. D. Gellat, Jr., and M. P. Vecchi (1983). Optimization by simulated annealing.Science, 220(4598), 671–680.

    Article  MathSciNet  Google Scholar 

  175. S. M. Kirkup (1998).The boundary element method in acoustics. Integrated Sound Software, Heptonstall.

    Google Scholar 

  176. R. E. Kleinmann, G. F. Roach, L. S. Schuetz, and J. Shirron (1988). An iterative solution to acoustic scatterin by rigid objects.Journal of the Acoustical Society of America,84(1) 385–391.

    Article  Google Scholar 

  177. F. G. Kollmann (1999).Maschinenakustik. Grundlagen, Meßtechnik, Berechnung, Beeinflussung. Springer Verlag, Berlin Heidelberg.

    Google Scholar 

  178. B. U. Koo (1997). Shape design sensitivity analysis of acoustic problems using a boundary element method.Computers and Structures,65(5), 713–719.

    Article  MATH  Google Scholar 

  179. B.-U. Koo, J.-G. Ih, and B.-C. Lee (1998). Acoustic shape sensitivity analysis using the boundary integral equation.Journal of the Acoustical Society of America,104(5), 2851–2860.

    Article  Google Scholar 

  180. G. H. Koopmann and J. B. Fahnline (1997).Designing Quiet Structures: A Sound Power Minimization Approach. Academic Press, San Diego, London.

    Google Scholar 

  181. W. Kozukue, C. Pal, and I. Hagiwara (1992). Optimization of noise level reduction by truncated model coupled structural-acoustic sensitivity analysis.Computers in Engineering (ASME),2, 15–22.

    Google Scholar 

  182. A. H. W. M. Kuijpers, G. Verbeek, and J. W. Verheij (1997). An improved acoustic Fourier boundary element formulation using fast Fourier transform integration.Journal of the Acoustical Society of America,102(3), 1394–1401.

    Article  Google Scholar 

  183. B. M. Kwak, J. S. Arora, and E. J. Haug, Jr (1975). Optimum design of damped vibration absorbers over a finite frequency range.AIAA Journal,13(4), 540–542.

    Article  Google Scholar 

  184. M. la Civita and A. Sestieri (1999). Optimization of an engine mounting system for vibroacoustic comfort improvement.Proceedings- SPIE The International Society for Optical Engineering, Issue 3727//PT2, pages 1998–2004.

  185. C. Lage and C. Schwab (1999). Advanced boundary element algorithms. In J. R. Whiteman, editor,The Mathematics of Finite Elements and Applications X—MAFELAP 1999, pages 283–306. Elsevier, Amsterdam.

    Google Scholar 

  186. C. Lage and C. Schwab (1999). Wavelet Galerkin algorithms for boundary integral equations.SIAM Journal for Scientific Computing,20(6), 2195–2222.

    Article  MATH  MathSciNet  Google Scholar 

  187. O. Laghrouche and P. Bettess (2000). Short wave modelling using special finite elements.Journal of Computational Acoustics,8(1), 189–210.

    MathSciNet  Google Scholar 

  188. J. S. Lamancusa (1988). Geometric optimization of internal combustion engine induction systems for minimum noise transmission.Journal of Sound and Vibration,127(2), 303–318.

    Article  Google Scholar 

  189. J. S. Lamancusa (1993). Numerical optimization techniques for structural-acoustic design of rectangular panels.Computers and Structures,48(4), 661–675.

    Article  MATH  Google Scholar 

  190. J. S. Lamancusa and H. A. Eschenauer (1994). Design optimization methods for rectangular panels with minimal sound radiation.AIAA Journal,32(3), 472–479.

    Article  MATH  Google Scholar 

  191. M. A. Lang and C. L. Dym (1975). Optimal acoustic design of sandwich panels.Journal of the Acoustical Society of America,57(6), 1481–1487.

    Article  Google Scholar 

  192. J. Lee and P. Hajela (1996). Parallel genetic algorithm implementation in multidisciplinary rotor blade design.Journal of Aircraft,33(5), 962–969.

    Article  Google Scholar 

  193. A. Lehr (1987). A carillon of major-third bells. Part iii: From theory to practice.Music Perception,4(3), 267–280.

    Google Scholar 

  194. K. E. Lewis and F. Mistree (1998). The other side of multidisciplinary design optimization: Accomodating a multiobjective, uncertain and non-deterministic world.Engineering Optimization,31, 161–189.

    Article  Google Scholar 

  195. Q. Q. Liang and G. P. Steven (2002). A performance-based optimization method for topology design of continuum structures with mean compliance constraints.Computer Methods in Applied Mechanical Engineering,191, 1471–1489.

    Article  MATH  Google Scholar 

  196. LMS Numerical Technologies, Leuven (2000).SYSNOISE User’s Manual, Rev. 5.5.

  197. Y. Lü, Q. Wang, Z. Hu, and J. Cui (1996). Optimization of acoustic impedance, geometric structure and operating condition of liners mounted in engine duct.Chinese Journal of Aeronautics,9(3), 193–203.

    Google Scholar 

  198. J. Luo and H. C. Gea (1997). Modal sensitivity analysis of coupled acoustic-structural systems.Journal of Vibration and Acoustics,119, 545–550, October.

    Article  Google Scholar 

  199. Z.-D. Ma and I. Hagiwara (1991). Sensitivity analysis methods for coupled acoustic-structural systems. Part ii: Direct frequency response and its sensitivities.AIAA Journal,29(11), 1796–1801.

    Article  MATH  Google Scholar 

  200. Z.-D. Ma and I. Hagiwara (1991). Sensitivity analysis methods for coupled acoustic-structural systems. Part i: Modal sensitivities.AIAA Journal,29(11), 1787–1795.

    Article  MATH  Google Scholar 

  201. Z.-D. Ma and I. Hagiwara (1994). Development of new mode-superposition technique for truncating lower and/or higher-frequency modes (Application of eigenmode sensitivity analysis for systems with repeated eigenvalues).JSME International Journal, Series C,37(1), 7–13.

    Google Scholar 

  202. Z. D. Ma, N. Kikuchi, and H. C. Cheng (1995). Topological design for vibrating structures.Computer Methods in Applied Mechanical Engineering,121, 259–280.

    Article  MATH  MathSciNet  Google Scholar 

  203. The MacNeal-Swendler Corporation (1998).MSC/Nastran manual, V70.5.

  204. S. N. Makarov and M. Ochmann (1998). An iterative solver for the Helmholtz integral equation for high frequency scattering.Journal of the Acoustical Society of America,103(2), 742–750.

    Article  Google Scholar 

  205. S. E. Makris, C. L. Dym, and J. MacGregor Smith (1986). Transmission loss optimization in acoustic sandwich panels.Journal of the Acoustical Society of America,92(6), 1833–1843.

    Article  Google Scholar 

  206. M. Malhotra and P. M. Pinsky (1996). A matrix-free interpretation of the non-local Dirichlet-to-Neumann radiation boundary condition.International Journal of Numerical Methods in Engineering,39, 3705–3713.

    Article  MATH  Google Scholar 

  207. M. Malhotra and P. M. Pinsky (2000). Efficient computation of multi-frequency far-field solutions of the Helmholtz equation using Pade approximation.Journal of Computational Acoustics,8(1), 223–240.

    MathSciNet  Google Scholar 

  208. S. Marburg (1996). Calculation and visualization of acoustic influence co-efficients in vehicle cabins using mode superposition techniques. In C. A. Brebbia, J. B. Martins,et al. (Eds),Boundary Elements XVIII Proceedings of the 18th International Conference on BEM in Braga (Portugal), pages 13–22, Southampton Boston. Computational Mechanics Publications.

    Google Scholar 

  209. S. Marburg (1998). Explicit frequency dependent matrices in the BE formulation. InSound and Silence: Setting the Balance—Proceedings of the INTERNOISE 98, volume 3, pages 1533–1536, Christchurch. New Zealand Acoustical Society Inc.

    Google Scholar 

  210. S. Marburg (2002). Efficient optimization of a noise transfer function by modification of a shell structure geometry. Part i: Theory.Structural and Multidisciplinary Optimization,24(1), 51–59.

    Article  Google Scholar 

  211. S. Marburg (2002). A general concept for design modification of shell meshes in structural—acoustic optimization. Part i: Formulation of the concept.Finite Elements in Analysis and Design,38(8), 725–735.

    Article  MATH  Google Scholar 

  212. S. Marburg (2002). Six elements per wavelength. Is that enough?Journal of Computational Acoustics,10(1), 25–51.

    Article  Google Scholar 

  213. S. Marburg, H.-J. Beer, J. Gier, H.-J. Hardtke, R. Rennert, and F. Perret (2002). Experimental verification of structural-acoustic modeling and design optimization.Journal of Sound and Vibration,252(4), 591–615.

    Article  Google Scholar 

  214. S. Marburg and H.-J. Hardtke (2001). Shape optimization of a vehicle hat-shelf: Improving acoustic properties for different load-cases by maximizing first eigenfrequency.Computers and Structures,79, 1943–1957.

    Article  Google Scholar 

  215. S. Marburg and H.-J. Hardtke (2002). Efficient optimization of a noise transfer function by modification of a shell structure geometry. Part ii: Application to a vehicle dashboard.Structural and Multidisciplinary Optimization,24(1), 60–71.

    Article  Google Scholar 

  216. S. Marburg and H.-J. Hardtke (2002). A general concept for design modification of shell meshes in structural-acoustic optimization. Part ii: Application to a vehicle floor panel.Finite Elements in Analysis and Design,38(8), 737–754.

    Article  MATH  Google Scholar 

  217. S. Marburg and H.-J. Hardtke (2002). Investigation and optimization of a spare wheel well to reduce vehicle interior noise.Journal of Computational Acoustics. In print.

  218. S. Marburg, H.-J. Hardtke, R. Schmidt, and D. Pawandenat (1997). An application of the concept of acoustic influence coefficients for the optimization of a vehicle roof.Engineering Analysis with Boundary Elements,20(4), 305–310.

    Article  Google Scholar 

  219. S. Marburg, H.-J. Hardtke, R. Schmidt, and D. Pawandenat (1997). Design optimization of a vehicle panel with respect to cabin noise problems. InProceedings of the NAFEMS World-Congress, pages 885–896, Stuttgart.

  220. S. Marburg and S. Schneider (2002). Influence of element types on numeric error for acoustic boundary elements.Journal of Computational Acoustics. in print.

  221. S. Marburg and S. Schneider (2002). Performance of iterative solvers for acoustic problems. Part i: Solvers and effect of diagonal preconditioning.Engineering Analysis with Boundary Elements. in print.

  222. J. B. Mariem and M. A. Hamdi (1987). A new boundary finite element method for fluid-structure interaction problems.International Journal of Numerical Methods in Engineering,24, 1251–1267.

    Article  MATH  Google Scholar 

  223. A. F. Mastryukov (1999). Solution of an inverse problem for acoustic-wave equations by a multilevel optimization method.Russian Geology and Geophysics,40(5), 747–757.

    Google Scholar 

  224. T. Matsumoto, M. Tanaka, and Y. Yamada (1995). Design sensitivity analysis of steady-state acoustic problems using boundary integral equation formulation.JSME International Journal, Series C,38(1), 9–16.

    Google Scholar 

  225. A. J. McMillan and A. J. Keane (1996). Shifting resonances from a frequency band by applying concentrated masses to a thin rectangular plate.Journal of Sound and Vibration,192(2), 549–562.

    Article  Google Scholar 

  226. A. J. McMillan and A. J. Keane (1997). Vibration isolation in a thin rectangular plate using a large number of optimally positioned point masses.Journal of Sound and Vibration,202(2), 219–234.

    Article  Google Scholar 

  227. F. P. Mechel (2001). Computational optimization of absorbers.Acustica,87, 513–518.

    Google Scholar 

  228. J. M. Melenk and I. Babuska (1996). The partition of unity finite element method. Basic theory and applications.Computer Methods in Applied Mechanical Engineering,139, 289–314.

    Article  MATH  MathSciNet  Google Scholar 

  229. R. A. Meric (1996). Shape design sensitivities and optimization for the nonhomogeneous Helmholtz equation by BEM.Communications in Numerical Methods in Engineering,12(2), 95–105.

    Article  MATH  Google Scholar 

  230. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953). Equations of state calculations by fast computing machines.Journal of Chemical Physics,21(6), 1087–1092.

    Article  Google Scholar 

  231. G. Miccoli (1999). Vibro-acoustic optimization of earth-moving machine cab structural components. InProceedings of the Inter-Noise 99, volume 3, pages 1761–1766, Fort Lauderdale.

  232. M. G. Milsted, T. Zhang, and R. A. Hall (1993). A numerical method for noise optimization of engine structures.Proceedings of the Institution of Mechanical Engineers/Part D: Journal of Automobile Engineering,207, 135–143.

    Article  Google Scholar 

  233. H. P. Mlejnek, U. Jehle, and R. Schirrmacher (1992). Second order approximations in structural genesis and shape finding.International Journal for Numerical Methods in Engineering, 34(3):853–872.

    Article  MATH  Google Scholar 

  234. D. C. Montgomery (1991).Design and Analysis of Experiments. John Wiley, New York.

    MATH  Google Scholar 

  235. H. Morand and R. Ohayon (1979). Substructure variational analysis of the vibrations of coupled fluid-structure systems. Finite element results.International Journal for Numerical Methods in Engineering, 14:741–755, 1979.

    Article  MATH  Google Scholar 

  236. H. Morand and R. Ohayon (1995).Fluid Structure Interactions. J. Wiley & Sons, Chichester.

    Google Scholar 

  237. J. E. Mottershead and M. I. Frishwell (1993). Model updating in structural dynamics: A survey.Journal of Sound and Vibration,167, 347–375.

    Article  MATH  Google Scholar 

  238. M. L. Munjal (Ed) (2002).IUTAM Symposium on Designing for Quietness. Kluwer Academic Publishers, Dortrecht/Boston/London.

    MATH  Google Scholar 

  239. K. Nagaya and L. Li (1997). Control of sound noise radiated from a plate using dynamic absorbers under the optimization by neural network.Journal of Sound and Vibration,208(2), 289–298.

    Article  Google Scholar 

  240. K. Naghshineh, G. H. Koopmann, and A. D. Belegundu (1992). Material tailoring of structures to achieve a minimum radiation condition.Journal of the Acoustical Society of America,92(2), 841–855.

    Article  Google Scholar 

  241. D. Nardini and C. A. Brebbia (1982). A new approach to free-vibration analysis using boundary elements. In C. A. Brebbia, editor,Boundary Element Methods in Engineering, Proceedings of the 4th Conference on BEM, pages 313–326, Southampton. Springer-Verlag.

    Google Scholar 

  242. D. J. Nefske, J. A. Wolf Jr., and L. J. Howell (1982). Structural-acoustic finite element analysis of the automobile passenger compartment: A review of current practice.Journal of Sound and Vibration,80(2), 247–266.

    Article  Google Scholar 

  243. J. C. O. Nielsen (2000). Acoustic optimization of railway sleepers.Journal of Sound and Vibration,231(3), 753–764.

    Article  Google Scholar 

  244. A. A. Oberai, M. Malhotra, and P. M. Pinsky (1998). On the implementation of the Dirichletto-Neumann radiation condition for iterative solution of the Helmholtz equation.Applied Numerical Mathematics,27, 443–464.

    Article  MATH  MathSciNet  Google Scholar 

  245. A. A. Oberai and P. M. Pinsky (1998). A multiscale finite element method for the Helmholtz equation.Computer Methods in Applied Mechanical Engineering,154(3/4), 281–298.

    Article  MATH  MathSciNet  Google Scholar 

  246. A. A. Oberai and P. M. Pinsky (2000). A numerical comparison of finite element methods for the Helmholtz equation.Journal of Computational Acoustics,8(1), 211–221.

    MathSciNet  Google Scholar 

  247. M. Ochmann (1999). The full-field equations for acoustic radiation and scattering.Journal of the Acoustical Society of America,105(3), 2674–2584.

    Google Scholar 

  248. N. Olhoff (1974). Optimal design of vibrating rectangular panels.International Journal of Solid Structures,10, 93–109.

    Article  MATH  Google Scholar 

  249. N. Olhoff (1976). A survey of the optimal design of vibrating structural elements. Part i: Theory.The Shock and Vibration Digest,8(8), 3–10.

    Article  Google Scholar 

  250. N. Olhoff (1976). A survey of the optimal design of vibrating structural elements. Part ii: Applications.The Shock and Vibration Digest,8(9), 3–10.

    Article  Google Scholar 

  251. L. G. Olson and K.-J. Bathe (1985). Analysis of fluid-structure interactions. A direct symmetric coupled formulation based on the fluid velocity potential.Computers and Structures,21, 21–32.

    Article  MATH  Google Scholar 

  252. C. Pal and I. Hagiwara (1993). Dynamic analysis of a coupled structural-acoustic problem. Simultaneous multi-modal reduction of vehicle interior noise level by combined optimization.Finite Elements in Analysis and Design,14, 225–234.

    Article  MATH  Google Scholar 

  253. C. Pal and I. Hagiwara (1994). Optimization of noise level reduction by truncated modal coupled structural-acoustic sensitivity analysis.JSME International Journal, Series C,37(2), 246–251.

    Google Scholar 

  254. O. I. Panič (1965). K voprosu o razrešimosti vnešnich kraevich zadač dlja volnovogo uravnenija i dlja sistemi uravnenij MAXWELLa.Uspechi Math. Nauk,20(1), 221–226.

    MATH  Google Scholar 

  255. C. I. Papadopoulos (2001). Redistribution of the low frequency acoustic modes of a room: A finite element-based optimisation method.Applied Acoustics,62, 1267–1285.

    Article  Google Scholar 

  256. M. Papila and R. T. Haftka (2000). Response surface approximation: Noise, error repair, and modelling errors.AIAA Journal,38, 2336–2343.

    Article  Google Scholar 

  257. D. M. Photiadis (1990). The relationship of singular value decomposition to wave-vector filtering in sound radiation problems.Journal of the Acoustical Society of America,88(2), 1152–1159.

    Article  MathSciNet  Google Scholar 

  258. P. M. Pinsky (2000). Personal communication.

  259. D. Polyzos, G. Dassics, and D. E. Beskos (1994). On the equivalence of dual reciprocity and particular integral approaches in the bem.Boundary Element Communications,5(6), 285–288.

    Google Scholar 

  260. M. J. D. Powell (1978). A fast algorithm for nonlinearly constrained optimization calculations. In G. A. Watson, editor,Numerical Analysis. Lecture notes in mathematics, volume 630. Springer Verlag, Berlin.

    Google Scholar 

  261. O. M. Querin, G. P. Steven, and Y. M. Xie (1998). Evolutionary structural optimization ESO using bidirectional algorithm.Engineering Computations,15, 1031–1048.

    Article  MATH  Google Scholar 

  262. C. Rajakumar, A. Ali, and S. M. Yunus (1992). A new acoustic interface element for fluid structure interaction problems.International Journal of Numerical Methods in Engineering,33, 369–386.

    Article  MATH  Google Scholar 

  263. A. Ratle and A. Berry (1998). Use of genetic algorithms for the vibroacoustic optimization of a plate carrying point-masses.Journal of the Acoustical Society of America,104(6), 3385–3397.

    Article  Google Scholar 

  264. P. A. Raviart and J. M. Thomas (1977). A mixed finite element method for second order elliptic problems. InMathematical Aspects of Finite Element Methods. Lecture Notes in Mathematics, volume 606. Springer Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  265. J. J. d. Rego Silva (1993).Acoustic and Elastic Wave Scattering using Boundary Elements, volume 18 ofTopics in Engineering. Computational Mechanics Publications, Southampton Boston.

    Google Scholar 

  266. D. Roesems (1997). A new methodology to support an optimized NVH engineering process.Sound and Vibration,31(5) 36–45.

    Google Scholar 

  267. P. J. M. Roozen-Kroon (1992).Structural Optimization of Bells. Dissertation, Technische Universiteit Eidhoven.

  268. H. H. Rosenbrock (1960). An automated method for finding the greatest or least value of a function.Computer Journal,3(4), 175–184.

    Article  MathSciNet  Google Scholar 

  269. G. I. Rozvany (2001). Stress ratio and compliance based methods in topology optimization—a critical review.Structural and Multidisciplinary Optimization,21, 109–119.

    Article  Google Scholar 

  270. Y. Saad (1994). ILUT: A dual threshold incompleteLU factorization.Numerical linear algebra with applications,1(4), 387–402.

    Article  MATH  MathSciNet  Google Scholar 

  271. R. R. Salagame, A. D. Belegundu, and G. H. Koopmann (1995). Analytical sensitivity of acoustic power radiated from plates.Journal of Vibration and Acoustics,117, 43–48, January.

    Article  Google Scholar 

  272. G. Sandberg (1995). A new strategy for solving fluid-structure problems.International Journal of Numerical Methods in Engineering,38, 357–370.

    Article  MATH  MathSciNet  Google Scholar 

  273. G. Sandberg and P. A. Görasson (1988). A symmetric finite element formulation for acoustic fluid-structure interaction analysis.Journal of Sound and Vibration,123, 507–515.

    Article  Google Scholar 

  274. A. Sarkissian (1990). Acoustic radiation from finite structures.Journal of the Acoustical Society of America,90, 574–578.

    Article  Google Scholar 

  275. S. Sauter (2000). Variable order panel clustering.Computing-Wien,64(3), 223–262.

    MATH  MathSciNet  Google Scholar 

  276. F. Scarpa (2000). Parametric sensitivity analysis of coupled acoustic-structural systems.Journal of Vibration and Acoustics,122, 109–115, April.

    Article  Google Scholar 

  277. F. Scarpa and G. Curti (1999). A method for the parametric sensitivity of interior acoustostructural coupled systems.Applied Acoustics,58(4), 451–467.

    Article  Google Scholar 

  278. H. A. Schenck (1968). Improved integral formulation for acoustic radiation problems.Journal of the Acoustical Society of America,44, 41–58.

    Article  Google Scholar 

  279. S. Schneider (2002). Application of fast methods for acoustic scattering and radiation problems.Journal of Computational Acoustics. In print.

  280. S. Schneider and S. Marburg (2002). Performance of iterative solvers for acoustic problems. Part ii: Acceleration by ilu-type preconditioner.Engineering Analysis with Boundary Elements. In print.

  281. A. J. G. Schoofs, P. H. L. Kessels, A. H. W. M. Kuijpers, and M. H. van Houten (2000). Sound and vibration optimization of carillon bells and MRI scanners. InInternational Workshop on Multidisciplinary Design Optimization, 10 pages, Pretoria, South Africa, August.

  282. A. J. G. Schoofs, M. B. M. Klink, and D. H. van Campen (1992). Approximation of structural optimization problems by means of designed numerical experiments.Structural Optimization,4, 206–212.

    Article  Google Scholar 

  283. A. J. G. Schoofs, P. J. M. Roozen-Kroon, and D. H. van Campen (1994). Optimization of structural and acoustical parameters of bells. In5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, 14 pages, Panama City Beach, Florida, September.

  284. A. J. G. Schoofs, F. van Asperen, P. Maas, and A. Lehr (1987). A carillon of major-third bells. Part i: Computation of bell profiles using structural optimization.Music Perception,4(3), 245–254.

    Google Scholar 

  285. A. J. G. Schoofs and D. H. van Campen (1998). Analysis and optimization of bells systems. In11th Carillon World Congress, 25 pages, Mechelen and Leuven, Belgium, August.

  286. A. F. Seybert, A. Charan, and D. W. Herrin (2000). Survey of numerical methods for sound radiation. InProceedings of the 7th International Congress on Sound and Vibration, volume IV, pages 1887–1894, Garmisch-Partenkirchen, Germany.

  287. A. F. Seybert, D. A. Hamilton, and P. A. Hayes (1998). Prediction of radiated noise from machine components using the BEM and the Rayleigh integral.Noise Control Engineering Journal,46(3), 77–82.

    Article  Google Scholar 

  288. A. F. Seybert, R. A. Seman, and M. D. Lattuca (1998). Boundary element prediction of sound propagation in ducts containing bulk absorbing materials.Transactions of the ASME,120, 976–981, October.

    Google Scholar 

  289. A. F. Seybert, T. W. Wu, and W. L. Li (1991). A coupled FEM/BEM for fluid-structure interaction using Ritz vectors and eigenvectors.ASME Applied Mechanics Division (AMD),128, 171–178. also:NCA Vol. 12.

    Google Scholar 

  290. W. S. Shephard Jr. and K. A. Cunefare (1997). Sensitivity of structural acoustic response to attachment feature scales.Journal of the Acoustical Society of America,102(3), 1612–1619.

    Article  Google Scholar 

  291. Q. Shi, I. Hagiwara, A. Azetsu, and T. Ichkawa (1998). Holographic neural network approximations for acoustic optimization.JSAE Review,19, 361–363.

    Article  Google Scholar 

  292. Q. Shi, I. Hagiwara, S. Azetsu, and T. Ichikawa (1998). Optimization of acoustic problem using holographic neural network.Transactions of the society of automotive engineers of Japan,29(3), 93–97, July. (in Japanese).

    Google Scholar 

  293. J. Sielaff, A. Kropp, A. Irrgang, and H. P. T. Trong (1998). CAE-gestützte Auslegung der Karosserie am Beispiel der Innenraumakustik. InEntwicklungen im Karosseriebau, pages 231–259. VDI-Report 1398.

  294. L. I. Slepyan and S. V. Sorokin (1995). Analysis of structural-acoustic coupling problems by a two-level boundary integral equations method.Journal of Sound and Vibration,184, 195–228.

    Article  MATH  Google Scholar 

  295. D. C. Smith and R. J. Bernhard (1992). Computation of acoustic shape design sensitivity using a boundary element method.Journal of Vibration and Acoustics,114, 127–132.

    Article  Google Scholar 

  296. J. A. Snyman and N. Stander (1994). New successive approximation method for optimal structural design.AIAA Journal,32(6), 1310–1315.

    Article  MATH  Google Scholar 

  297. J. Sobieszczanski-Sobieski, S. Kodiyalam, and R. Yang (2001). Optimization of car body under constraints of noise, vibration, and harshness (NVH), and crash.Structural and Multidisciplinary Optimization,22(4), 295–306.

    Article  Google Scholar 

  298. B. Soenarko (1993). A boundary element formulation for radiation of acoustic waves from axisymmetric bodies with arbitrary boundary conditions.Journal of the Acoustical Society of America,93(2), 631–639.

    Article  Google Scholar 

  299. C. Soize and J.-C. Michelucci (2000). Structural shape parametric optimization for an internal structural-acoustic problem.AIAA Journal,4, 263–275.

    MATH  Google Scholar 

  300. S. V. Sorokin (1995). Analysis of vibrations of a spatial acoustic system by the boundary integral equations method.Journal of Sound and Vibration,180, 657–667.

    Article  Google Scholar 

  301. R. L. St. Pierre Jr. and G. H. Koopmann (1995). A design method for minimizing the sound power radiated from plates by adding optimally sized, discrete masses.Journal of Mechanical Design,117, 243–251, June.

    Article  Google Scholar 

  302. R. Statnikov and J. Matusov (1995).Multicriteria optimization and engineering. Chapman & Hall, New York.

    Google Scholar 

  303. S. Suzuki (1991). Applications in the automotive industry. In R. D. Ciskowski and C. A. Brebbia, editors,Boundary Elements in Acoustics, chapter 7, pages 131–146. Computational Mechanics Publications and Elsevier Applied Science.

  304. S. Suzuki, S. Maruyama, and H. Ido (1989). Boundary element analysis of cavity noise problems with complicated boundary conditions.Journal of Sound and Vibrations,130(1), 79–91.

    Article  Google Scholar 

  305. K. Svanberg (1987). The method of moving asymptotes—a new method for structural optimization.International Journal for Numerical Methods in Engineering,24, 359–373.

    Article  MATH  MathSciNet  Google Scholar 

  306. Swanson Analysis System Inc., Houston (1999).ANSYS GUI Help Manual, ANSYS Release 5.6.

  307. A. Tadeu and J. Antonio (2000). Use of constant, linear and quadratic boundary elements in 3d wave diffraction analysis.Engineering Analysis with Boundary Elements,24, 131–144.

    Article  MATH  Google Scholar 

  308. K. C. Tan, T. H. Lee, and E. F. Khor (2001). Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization.IEEE Transactions on Evolutionary Computation,5(6), 565–588.

    Article  Google Scholar 

  309. M. Tinnsten (2000). Optimization of acoustic response—a numerical and experimental comparison.Structural and Multidisciplinary Optimization,19, 122–129.

    Article  Google Scholar 

  310. M. Tinnsten and P. Carlsson (2002). Numerical optimization of violin top plates.Acustica,88, 278–285.

    Google Scholar 

  311. M. Tinnsten, P. Carlsson, and M. Jonsson (2002). Stochastic optimization of acoustic response —a numerical and experimental comparison.Structural and Multidisciplinary Optimization,23(6), 405–411.

    Article  Google Scholar 

  312. M. Tinnsten, B. Esping, and M. Jonsson (1999). Optimization of acoustic response.Structural Optimization,18(1), 36–47.

    Article  Google Scholar 

  313. V.V. Toropov (1989). Simulation approach to structural optimization.Structural Optimization,1, 37–46.

    Article  Google Scholar 

  314. V. V. Toropov, A. A. Filatov, and A. A. Polynkine (1993). Multiparameter structural optimization using FEM and multi-point approximations.Structural Optimization,6, 7–14.

    Article  Google Scholar 

  315. N. Tsujiuchi, T. Koizumi, T. Takenaka, and T. Iwagase (2001). An optimization of rubber mounting for vehicle interior noise reduction.Proceedings-SPIE The International Society for Optical Engineering, Issue 4359, pages 275–281.

  316. F. Ursell (1973). On the exterior problems of acoustic.Proc. Cambridge Philos. Soc.,74, 117–125.

    Article  MATH  MathSciNet  Google Scholar 

  317. M. H. van Houten (1998).Function Approximation Concepts for Multidisciplinary Design Optimization. Dissertation, Technische Universiteit Eindhoven.

  318. M. H. van Houten, A. J. G. Schoofs, and D. H. van Campen (1997). Damping of bells using experimental and numerical methods. InProceedings of Fifth International Congress on Sound and Vibration, 8 pages, Adelaide, Australia, December.

  319. G. N. Vanderplaats and F. Moses (1973). Structural optimization by method of feasible directions.Computers and Structures,3, 739–755.

    Article  Google Scholar 

  320. G. N. Vanderplaats, H. L. Thomas, and Y. K. Shyy (1991). Review of approximation concepts for structural synthesis.Journal of Computing Systems in Engineering,2(1), 17–25.

    Article  Google Scholar 

  321. N. Vincent, P. Bouvet, D. J. Thompson and P. E. Gautier (1996). Theoretical optimization of track components to reduce rolling noise.Journal of Sound and Vibration,193(1), 161–171.

    Article  Google Scholar 

  322. O. von Estorff (Ed) (2000).Boundary Element in Acoustics: Advances and Applications. WIT Press, Southampton.

    Google Scholar 

  323. B. P. Wang (1992). Eigenvalue sensitivity with respect to location of internal stiffness and mass attachments.AIAA Journal,31 (4), 791–794.

    Article  Google Scholar 

  324. S. Wang (1999). Design sensitivity analysis of noise, vibration, and harshness of vehicle body structure.Mechanics of Structures and Machines,27 (3), 317–336.

    Article  Google Scholar 

  325. S. Wang and J. Lee (2001). Acoustic design sensitivity analysis and optimization for reduced exterior noise.AIAA Journal,39(4), 574–580.

    Article  Google Scholar 

  326. X. Wang and K.-J. Bathe (1997). Displacement/pressure based mixed finite element formulations for acoustic fluid structure interaction problems.International Journal for Numerical Methods in Engineering 40, 2001–2017.

    Article  MATH  Google Scholar 

  327. D. Watts and J. Starkey (1990). Design optimization of response amplitudes in viscously damped structures.Journal of Vibration and Acoustics,112, 275–280, July.

    Article  Google Scholar 

  328. J. H. Wilkinson (1965).The algebraic eigenvalue problem. Oxford University Press.

  329. E. L. Wilson, M. W. Yuan, and J. M. Dickens (1982). Dynamic analysis by direct superposition of Ritz vectors.Earthquake Engineering and Structural Dynamics, 10, 813–821.

    Article  Google Scholar 

  330. H.-W. Wodtke and J. S. Lamancusa (1998). Sound power minimization of circular plates through damping layer placement.Journal of Sound and Vibration,215(5), 1145–1163.

    Article  Google Scholar 

  331. S. Y. Woon, O. M. Querin, and G. P. Steven (2001). Structural application of a shape optimization method based on a genetic algoithm.Structural and Multidisciplinary Optimization,22, 57–64.

    Article  Google Scholar 

  332. T. W. Wu (Ed) (2000).Boundary Element in Acoustics: Fundamentals and Computer Codes. WIT Press, Southampton.

    Google Scholar 

  333. H. Xia and J. L. Humar (1992). Frequency dependent Ritz vectors.Earthquake Engineering and Structural Dynamics,21, 215–231.

    Article  Google Scholar 

  334. Y. M. Xie and G. P. Steven (1996). Evolutionary structural optimization for dynamic problems.Computers and Structures,58, 1067–1073.

    Article  MATH  Google Scholar 

  335. Y. M. Xie and G. P. Steven (1997).Evolutionary structural optimization. Springer Verlag, London.

    MATH  Google Scholar 

  336. Y. G. Xu, G. R. Li, and Z. P. Wu (2001). A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move.Applied Artificial Intelligence,15, 601–631.

    Article  Google Scholar 

  337. I. Yamazaki and T. Inoue (1989). An application of structural-acoustic coupling analysis to boom noise.SAE-paper 891966, pages 1–9.

  338. S. Yang, G. Ni, Y. Li, B. Tian, and R. Li (1998). An universal tabu search algorithm for global optimization of multimodal functions with continuous variables in electromagnetics.IEEE Transactions on Magnetics,34(5), 2901–2904.

    Article  Google Scholar 

  339. T. C. Yang, C. H. Tseng, and S. F. Ling (1986). A boundary-element-based optimization technique for design of enclosure acoustical treatments.Journal of the Acoustical Society of America,98(1), 302–312.

    Article  Google Scholar 

  340. H. J. Yim and S. B. Lee (1997). Design optimization of vehicle structures for idle shake vibration.Proceedings-SPIE The International Society for Optical Engineering, Issue 3089//PT1, pages 432–437.

  341. J. Yoo and P. Hajela (1998). Immune network simulations in multicriterion design.Structural Optimization,18, 85–94.

    Google Scholar 

  342. J. Yoo and P. Hajela (2001). Fuzzy multicriterion design using immune network simulation.Structural and Multidisciplinary Optimization,22, 188–197.

    Article  Google Scholar 

  343. C. B. Zhao, G. P. Steven, and Y. M. Xie (1997). Evolutionary optimization of maximizing the difference between two natural frequencies of a vibrating structure.Structural Optimization,13, 148–154.

    Article  Google Scholar 

  344. O. C. Zienkiewicz (1977).The Finite Element Method. McGraw Hill, Berkshire, 3 edition.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marburg, S. Developments in structural-acoustic optimization for passive noise control. ARCO 9, 291–370 (2002). https://doi.org/10.1007/BF03041465

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03041465

Keywords

Navigation