Japanese Journal of Rheumatology

, Volume 8, Issue 1, pp 59–67 | Cite as

Association between hypoxanthine concentration in synovial fluid and joint destruction in patients with rheumatoid arthritis

  • Yutaka Nakanishi
  • Hisashi Yamanaka
  • Masayuki Hakoda
  • Satoshi Nakazawa
  • Seiji Saito
  • Masako Hara
  • Naoyuki Kamatani
  • Sadao Kashiwazaki
Original Paper


To evaluate the significance of augmented levels of hypoxanthine in synovial fluids in patients with rheumatoid arthritis (RA), the hypoxanthine level in the synovial fluid was investigated in association with joint damage. Concentrations of hypoxanthine, xanthine and uric acid in synovial fluids from knee joints of 45 patients with RA, six patients with gout and five patients with osteoarthritis were determined by high performance liquid chromatography. Relationships between these oxypurines and markers for joint inflammation or Larsen grade of knee joint X-ray film were analyzed. Hypoxanthine levels were significantly elevated in patients with RA and with gout but not in those with osteoarthritis. In RA patients, levels of synovial fluid hypoxanthine were correlated with matrix metalloproteinases MMP-3 (r=0.510), but not with C-reactive protein nor synovial fluid cytokines. Among various biological factors in synovial fluid (including cytokines and metalloproteinases) only hypoxanthine levels were significantly (P<0.05) positively correlated with Larsen’s grade of knee joint. In conclusion, augmented levels of synovial hypoxanthine can indicate joint damage in patients with RA and might be a useful marker in a clinical context.

Key words

Hypoxanthine rheumatoid arthritis cartilage metalloproteinase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cohen MV: Free radicals in ischemic and reperfusion myocardial injury: is this the time for clinical trials?Ann Intern Med 111: 918–931, 1989.PubMedGoogle Scholar
  2. 2.
    Wikstrom G, Ronquist G, Nilsson Set al.: Continuous monitoring of energy metabolites using microdialysis during myocardial ischaemia in the pig,Eur Heart J 16: 339–347, 1995.PubMedGoogle Scholar
  3. 3.
    Kennedy TP, Rao NV, Hopkins Cet al.: Role of reactive oxygen species in reperfusion injury of the rabbit lung,J Clin Invest 83: 1326–1335, 1989PubMedCrossRefGoogle Scholar
  4. 4.
    Grune T, Mueller R, Jakstadt Met al.: Is hypoxanthine a useful marker of perinatal hypoxia?Adv Exp Med Biol 370: 295–298 1994PubMedGoogle Scholar
  5. 5.
    Mineo I, Kono N, Shimizu Tet al.: Excess purine degradation in exercising muscles of patients with glycogen storage disease types V and VII.J Clin Invest 76: 556–560 1985.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamanaka H, Kawagoe Y, Taniguchi Aet al.: Accelerated purine nucleotide degradation by anaerobic but not aerobic ergometer muscle exercise.Metabolism 41: 364–369, 1992.PubMedCrossRefGoogle Scholar
  7. 7.
    Fox IH, Palella TD, Kelley WN: Hyperuricemia: a marker for cell energy crisis.New Engl J Med 317: 111–112, 1987.PubMedCrossRefGoogle Scholar
  8. 8.
    Herbert KE, Scott DL, Perrett D: Nucleosides and bases in synovial fluid from patients with rheumatoid arthritis and osteoarthritis.Clin Sci 74: 97–99, 1988.PubMedGoogle Scholar
  9. 9.
    Gudbjornsson B, Zak A, Niklasson Fet al.: Hypoxanthine, xanthine, and urate in synovial fluid from patients with inflammatory arthritides.Ann Rheum Dis 50: 669–672, 1991.PubMedCrossRefGoogle Scholar
  10. 10.
    Arnett FC, Edworthy SM, Bloch DAet al.: The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis.Arthritis Rheum 31: 315–324, 1988.PubMedCrossRefGoogle Scholar
  11. 11.
    Wallece SL, Robinson H, Masi ATet al.: Preliminary criteria for the classification of the acute arthritis of primary gout.Arthritis Rheum 20: 895–900, 1977.CrossRefGoogle Scholar
  12. 12.
    Kojima T, Nishina T, Kitamura Met al.: Biochemical studies on the purine metabolism of four cases with hereditary xanthinuria.Clin Chim Acta 137: 189–198, 1984.PubMedCrossRefGoogle Scholar
  13. 13.
    Harigai M, Hara M, Yoshimura Tet al.: Monocyte chemoattractant protein-1 (MCP-1) in inflammatory joint disease and its involvement in the cytokine network of rheumatoid synovium.Clin Immunol Immunopath 69: 83–91, 1993.CrossRefGoogle Scholar
  14. 14.
    Obata K, Iwata K, Okada Yet al.: A one-step sandwich enzyme immunoassay for human matrix metalloproteinase 3 (stromelysin-1) using monoclonal antibodies.Clin Chim Acta 211: 59–72, 1992.PubMedCrossRefGoogle Scholar
  15. 15.
    Kodama S, Iwata K, Iwata Het al.: Rapid one-step sandwich enzyme immunoassay for tissue inhibitor of metalloproteinases. An application for rheumatoid arthritis serum and plasma.J Immunol Methods 127: 103–108, 1990.PubMedCrossRefGoogle Scholar
  16. 16.
    Larsen A, Dale K, Eek M: Radiographic evaluation of rheumatoid arthritis and related conditions by standard reference films,Acta Radiologica Diagnosis 18: 481–491, 1997.Google Scholar
  17. 17.
    Stevens CR, Williams RB, Fared AJet al.: Hypoxia and inflammatory synovitis: observations and speculation.Ann Rheum Dis 50: 124–132, 1991.PubMedCrossRefGoogle Scholar
  18. 18.
    Woodruff T, Blake DR, Freeman Jet al.: Is chronic synovitis an example of reperfusion injury?Ann Rheum Dis 45: 608–611, 1987.CrossRefGoogle Scholar
  19. 19.
    Tsuboguchi S, Matsui N, Taneda Yet al.: Arthroscopic findings of cartilage changes in knees with rheumatoid arthritis.Ryumachi 29: 110–117, 1989.PubMedGoogle Scholar
  20. 20.
    Manicourt DH, Fujimoto N, Obata Ket al.: Levels of circulating collagenase, stromelysin-1, and tissue inhibitor of matrix metalloproteinases 1 in patients with rheumatoid arthritis. Relationship to serum levels of antigenic keratin sulfate and systemic parameters of inflammation.Arthritis Rheum 38: 1031–1039, 1995.PubMedCrossRefGoogle Scholar
  21. 21.
    Allen RE, Outhwaite JM, Morris CJet al.: Xanthine oxidoreductase is present in human synovium.Ann Rheum Dis 46: 843–845, 1987.PubMedCrossRefGoogle Scholar
  22. 22.
    Stevens CR, Benboubetra M, Harrison Ret al.: Localization of xanthine oxidase to synovial endothelium.Ann Rheum Dis 50: 760–762, 1991.PubMedCrossRefGoogle Scholar
  23. 23.
    Saari H, Konttinen YT, Friman Cet al.: Differential effects of reactive oxygen species on native synovial fluid and purified human umbilical cord hyaluronate.Inflammation 17: 403–415, 1993.PubMedCrossRefGoogle Scholar
  24. 24.
    Singh D, Nazhat NB, Fairburn Ket al.: Electron spin resonance spectroscopic demonstration of the generation of reactive oxygen species by diseased human synovial tissue following ex vivo hypoxia-reoxygenation.Ann Rheum Dis 54: 94–99, 1995.PubMedCrossRefGoogle Scholar
  25. 25.
    Weinblatt ME, Coblyn JS, Fox DAet al.: Efficacy of low dose of methotrexate in rheumatoid arthritis.N Engl J Med 312: 818–822, 1985.PubMedGoogle Scholar
  26. 26.
    Alt FW, Kellems RE, Bertino JRet al.: Multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells.J Biol Chem 253: 1357–1360, 1978.PubMedGoogle Scholar
  27. 27.
    Nakajima A, Hakoda M, Yamanaka Het al.: Divergent effects of methotrexate on the clonal growth of T and B lymphocytes and synovial adherent cells from patients with rheumatoid arthritis.Ann Rheum Dis 55: 237–242, 1996.PubMedCrossRefGoogle Scholar

Copyright information

© VSP and Japanese Rheumatism Association 1998

Authors and Affiliations

  • Yutaka Nakanishi
    • 1
  • Hisashi Yamanaka
    • 1
  • Masayuki Hakoda
    • 1
  • Satoshi Nakazawa
    • 1
  • Seiji Saito
    • 1
  • Masako Hara
    • 1
  • Naoyuki Kamatani
    • 1
  • Sadao Kashiwazaki
    • 1
  1. 1.Institute of RheumatologyTokyo Women’s Medical CollegeShinjuku-ku, TokyoJapan

Personalised recommendations