Advertisement

Il Nuovo Cimento D

, Volume 19, Issue 2–4, pp 625–635 | Cite as

Characterization of microdefects in GaAs crystals with high-resolution X-ray diffractometry

  • E. Zielińska-Rohozińska
  • T. Słupiński
  • J. Gronkowski
  • T. Harasimowicz
  • J. Borowski
Article

Summary

The aim of the present work was to correlate the electric characteristics of Te-doped gallium arsenide grown by LEC technique with the defect contents of the samples. Measurements for GaAs samples, doped with Si, Ge and Ge+Te as well as undoped ones, grown by various methods (HB, VGF and LEC), were also performed. In order to characterize the defects High Resolution X-Ray Diffractometry was used. Measurements of diffuse scattering intensity maps around the reciprocal lattice points and plane wave reflection topography were employed. For most cases in the range of free-electron concentrations between 1·1017 cm−3 and 6·1018 cm−3 (as well as for SI samples) the isointensity contours in the maps exhibit generally the same character. For higher doping level the intensity of X-ray diffuse scattering increases and it can be further increased by the annealing which causes a decrease of free-electron concentration. An analysis of the reciprocal-space maps is presented. Several types of defects should be considered in order to describe isointensity contours.

PACS

61.10 X-ray diffraction and scattering 

PACS

61.72 Defects and impurities in crystals microstructure 

PACS

01.30. Cc Conference proceedings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Eckstein H,Phys. Rev.,68 (1945) 120.CrossRefADSGoogle Scholar
  2. [2]
    Huang K,Proc. R. Soc. London, Ser. A,190 (1947) 122.ADSGoogle Scholar
  3. [3]
    Krivoglaz M. A. et al., Phys. Met. Metallogr.,7, (1959), 650;9 (1960) 641;10 (1960) 169;12 (1961) 465.Google Scholar
  4. [4]
    Krivoglaz M. A.,Theory of X-Ray and Thermal and Neutron Scattering by Real Crystals (Plenum, New York) 1969.Google Scholar
  5. [5]
    Krivoglaz M. A. andRyaboshapka K. P.,Phys. Metals. Metallogr.,16 (1963) 641. See also ref. [27].Google Scholar
  6. [6]
    Krivoglaz M. A.,Diffrakciya rentgenovskikh lucey i neytronov v neidealnykh kristallakh, (Naukova Dumka, Kiev) 1983 (in Russian).Google Scholar
  7. [7]
    Krivoglaz M. A.,Diffuznoe rasseyaniye rentgenovskikh lucey na fluktuaciyonnykh neodnorostiyakh v neidealnykh kristallakh (Naukova Dumka, Kiev) 1984 (in Russian).Google Scholar
  8. [8]
    Dederichs P. H.,Phys. Rev. B,4 (1971) 1041.CrossRefADSGoogle Scholar
  9. [9]
    Dederichs P. H.,J. Phys. F,3 (1973) 471.CrossRefADSGoogle Scholar
  10. [10]
    Dederichs P. H.,Phys. Rev. B,4 (1970) 1306.CrossRefADSGoogle Scholar
  11. [11]
    Trinkaus H. Phys. Status Solidi B,51 (1972) 307.CrossRefGoogle Scholar
  12. [12]
    Ehrhardt P, Trinkaus H andLarson B. C.,Phys. Rev. B,25 (1982) 834.CrossRefADSGoogle Scholar
  13. [13]
    Larson B. C. andSchmatz W.,Phys. Rev. B,25 (1974) 2307.CrossRefADSGoogle Scholar
  14. [14]
    Belov A. Yu. andKaganer V. M.,Phys. Met.,9 (1990) 665.Google Scholar
  15. [15]
    Kamzaki H.,J. Phys. Chem. Solids,2 (1957) 107.CrossRefADSGoogle Scholar
  16. [16]
    Thomas J. E., Baldwin T. O. andDederichs P. H.,Phys. Rev. B,3 (1971) 1167.CrossRefADSGoogle Scholar
  17. [17]
    Patel J. R. andBatterman B. W.,J. Appl. Phys.,39 (1968) 1541.CrossRefGoogle Scholar
  18. [18]
    Patel J. R.,J. Appl. Crystallogr.,8 (1975) 186.CrossRefGoogle Scholar
  19. [19]
    Lonsdale K. andSmith H.,Nature,148 (1941) 112, 257.CrossRefADSGoogle Scholar
  20. [20]
    Holý V. inWorkshop “High Resolution X-Ray Characterization of Materials”, Aigen/Linz 28–30/9/1992 (Austria).Google Scholar
  21. [21]
    Charniy L. A., Morozov A. N., Bublik V. T., Scherbakov K. D., Stepantseva J. V. andKaganer V. M.,J. Crystal Growth,118 (1992) 163.CrossRefADSGoogle Scholar
  22. [22]
    Charniy L. A., Morozov A. N., Scherbakov K. D., Bublik V. T. andStepantseva J. V.,J. Crystal. Growth,116 (1992) 369.CrossRefADSGoogle Scholar
  23. [24]
    Franzosi P.,J. Crystal Growth,126 (1993) 85.CrossRefADSGoogle Scholar
  24. [25]
    Fewster P. F.,J. Appl. Crystallogr.,22 (1989) 64.CrossRefGoogle Scholar
  25. [26]
    Fewster P. F. andAndrew N. L.,J. Appl. Crystallogr.,26 (1993) 812.CrossRefGoogle Scholar
  26. [28]
    Fuller C. S. andWolfstirn K. B.,J. Appl. Phys.,34, (1963) 2287.CrossRefADSGoogle Scholar
  27. [28]
    Słupiński T., Zielińska-Rohozińska E. andHarasimowicz T.,Acta Phys. Polon. A,90 (1996) 1080.Google Scholar

Copyright information

© Società Italiana di Fisica 1997

Authors and Affiliations

  • E. Zielińska-Rohozińska
    • 1
  • T. Słupiński
    • 1
  • J. Gronkowski
    • 1
  • T. Harasimowicz
    • 1
  • J. Borowski
    • 1
  1. 1.Institute of Experimental PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations