Skip to main content
Log in

Quantitative analysis of screw dislocations in 6H−SiC single crystals

  • Published:
Il Nuovo Cimento D

Summary

Screw dislocations along the [0001] axis in 6H−SiC single crystals have been studied extensively by Synchrotron White-Beam X-ray Topography (SWBXT), Scanning Electron Microscopy (SEM), and Nomarski Optical Microscopy (NOM). Using SWBXT, the magnitude of the Burgers vector of screw dislocations has been determined by measuring the following four parameters: 1) the diameter of dislocation images in back-reflection topographs; 2) the width of bimodal dislocation images in transmission topographs; 3) the magnitude of the tilt of lattice planes on both sides of dislocation core in projection topographs; and 4) the magnitude of the tilt of lattice planes in section topographs. The four methods show good agreement. SEM results reveal that micropipes in the form of hollow tubes run through the crystal emerging as holes on the as-grown surface, with their diameters ranging from about 0.1 to a few micrometers. Correlation between topographic images and SEM micrographs shows that micropipes are screw dislocations with Burgers vector magnitudes from 2c to 7c (c is the lattice constant along the [0001] axis). There isno were fitted to Frank’s prediction for hollow-core screw dislocations:D =μb2/4π 2 γ, where μ is the shear modulus, and γ is the specific surface energy. Statistical analysis of the relationship betweenD and b2 shows that it is approximately linear, and the constant, γ/μ, obtained from the slope, ranges from 1.1×10−3 to 1.6×10−3 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Frank F. C.,Acta Cryst.,4 (1951) 497.

    Article  Google Scholar 

  2. Verma A. R., inCrystal Growth and Dislocations (Butterworths, London) 1953, pp. 166–172.

  3. Sunagawa I. andBennema P.,J. Cryst. Growth,53 (1981) 490.

    Article  ADS  Google Scholar 

  4. Tanaka H., Uemura Y. andInomata Y.,J. Cryst. Growth,53 (1981) 630.

    Article  ADS  Google Scholar 

  5. Krishna A. P., Jiang S. S. andLang A. R.,J. Cryst. Growth,71 (1985) 41.

    Article  ADS  Google Scholar 

  6. Golightly J. P.,Z. Krist.,130 (1969) 310.

    Article  Google Scholar 

  7. Komatsu H. andMiyashita S.,Jpn. J. Appl. Phys.,32 (1993) 1478.

    Article  ADS  Google Scholar 

  8. Dudley M., Wang S., Huang W., Carter C. H. jr. andTsvetkov V.,J. Phys. D,28 (1995) A63.

    Article  ADS  Google Scholar 

  9. Wang S., Ph. D. Thesis, State University of New York at Stony Brook, USA, 1995.

  10. Tanner B. K., Midgley M. andSafa M.,J. Appl. Cryst.,10 (1977) 281.

    Article  Google Scholar 

  11. Klapper H.,J. Appl. Cryst.,9 (1976) 310.

    Article  Google Scholar 

  12. Mardix S., Lang A. R. andBelch I.,Philos. Mag.,24 (1971) 683.

    Article  ADS  Google Scholar 

  13. Miltat J., inCharacterization of Crystal Growth Defects by X-Ray Methods, edited byB. K. Tanner andD. K. Bowen (Plenum Press, New York) 1980, p. 408.

    Google Scholar 

  14. Miltat J. E. A. andBowen D. K.,J. Appl. Cryst.,8 (1975) 657.

    Article  Google Scholar 

  15. Kirschstein G. (Chief Editor)Gmelin Handbook of Inorganic Chemistry, 8th edition,Silicon, Supplement, Vol. B2,Properties of Crystalline Silicon Carbide (Springer-Verlag, New York) 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudley, M., Si, W., Wang, S. et al. Quantitative analysis of screw dislocations in 6H−SiC single crystals. Nouv Cim D 19, 153–164 (1997). https://doi.org/10.1007/BF03040968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03040968

PACS

PACS

PACS

PACS

Navigation