Journal of Chemical Sciences

, Volume 105, Issue 6, pp 495–503 | Cite as

Photoinduced ET and back-ET in bimetallated compounds of Ru(II)-Rh(III) and Ru(II)-Co(III)

  • K. Nozaki
  • A. Yoshimura
  • T. Ohno
Special Issue on Solar Energy and Applied Photochemistry


Intramolecular electron transfer processes in bimetallated donor-acceptor compounds have been investigated by means of laser photolysis kinetic spectroscopy. An excited Ru(II)-moiety of donor-acceptor compounds undergoes intramolecular electrontransfer to either a rhodium(III) ion or a cobalt(III) ion, followed by back-electron transfer, an Arrhenius plot of the electron-transfer-rate gave a straight line of intercept (frequency factor) and slope (activation energy) for the photoinduced electron transfers and the back electron transfers. A common and large frequency factor observed for Ru(H)-Rh(III) compounds is accounted for in terms of solvent-relaxation dynamics. The activation energy observed consists of outersphere rearrangement energy depending on the metal ion-metal ion distance. For the photoinduced electron transfers and subsequent back-electron transfers in the Ru(II)-Co(III) compounds, the electron-transfer-rates are reduced because of weak electronic coupling, large rearrangement energy and negative entropy change.


Donor-acceptor linked compound electron transfer nuclear tunnelling temperature-dependence of ET rate rearrangement energy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bixon M and Jortner J 1991J. Phys. Chem. 95 1941CrossRefGoogle Scholar
  2. Brunschwig B S, Ehrenson S and Sutin N 1984J. Am. Chem. Soc. 106 6858CrossRefGoogle Scholar
  3. Buhks E, Bixon M, Jortner J and Navon G 1979Inorg. Chem. 18 2014CrossRefGoogle Scholar
  4. Calef D F and Wolynes P G 1983J. Phys. Chem. 87 3387CrossRefGoogle Scholar
  5. Creutz C 1983Prog. Inorg. Chem. 30 1CrossRefGoogle Scholar
  6. Creutz C, Delier A D, Sutin N and Zipp A P 1982J. Am. Chem. Soc. 104 3618CrossRefGoogle Scholar
  7. Endicott J F, Durham B, Glick M D, Anderson T J, Kuszaj J M, Schmonsees W G and Balakrishnan K P 1981J. Am. Chem. Soc. 103 1431CrossRefGoogle Scholar
  8. Hupp J T and Weaver M J 1984Inorg. Chem. 23 256CrossRefGoogle Scholar
  9. Hush N S 1967Prog. Inorg. Chem. 8 391CrossRefGoogle Scholar
  10. Isied S S, Vassilian A, Wishart J F, Creutz C, Schwartz H A and Sutin N 1988J. Am. Chem. Soc. 110 635CrossRefGoogle Scholar
  11. Kestner N R, Logan J and Jortner J 1974J. Chem. Phys. 78 2148CrossRefGoogle Scholar
  12. Larsson S 1981J. Am. Chem. Soc. 103 4034CrossRefGoogle Scholar
  13. Larsson S 1984J. Phys. Chem. 88 1321CrossRefGoogle Scholar
  14. Liang N, Miller J R and Closs G L 1990J. Am. Chem. Soc. 112 5353CrossRefGoogle Scholar
  15. Marcus R A 1956J. Phys. Chem. 24 966CrossRefGoogle Scholar
  16. Marcus R A 1965J. Phys. Chem. 43 679CrossRefGoogle Scholar
  17. Marcus R and Sutin N 1986Comment Inorg. Chem. 119Google Scholar
  18. Newton M D 1991J. Phys. Chem. 95 30CrossRefGoogle Scholar
  19. Nozaki K, Ohno T and Haga M 1992J. Phys. Chem. 96 10880CrossRefGoogle Scholar
  20. Nozaki K, Ohno T, Hirata Y and Okada T 1993Photoinduced electron transfer and back electron transfer within bimetallated compounds of Ru(II) and Rh(III) (to be published)Google Scholar
  21. Ohno T, Nozaki K and Haga M 1992aInorg. Chem. 31 548CrossRefGoogle Scholar
  22. Ohno T, Nozaki K and Haga M 1992bInorg. Chem. 31 4256CrossRefGoogle Scholar
  23. Simon J D 1988Acc. Chem. Res. 21 128CrossRefGoogle Scholar
  24. Sutin N and Creutz C 1983J. Chem. Educ. 60 809CrossRefGoogle Scholar
  25. Ulstrup J and Jortner J 1975J. Chem. Phys. 63 4358CrossRefGoogle Scholar
  26. Yoshimura A, Nozaki K, Ikeda N and Ohno T 1993J. Am. Chem. Soc. 115 752Google Scholar

Copyright information

© Indian Academy of Sciences 1993

Authors and Affiliations

  • K. Nozaki
    • 1
  • A. Yoshimura
    • 1
  • T. Ohno
    • 1
  1. 1.Chemistry Department, College of General EducationOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations