Advertisement

Research on Chemical Intermediates

, Volume 34, Issue 1, pp 103–111 | Cite as

Preparation of TiO2 nano-particle photocatalysts by a multi-gelation method: the effect of pH change

  • B. Neppolian
  • D. R. Eddy
  • S. Sakai
  • Y. Okada
  • H. Nishijima
  • M. Anpo
Article

Abstract

TiO2 photocatalysts were prepared by a multi-gelation method and the effect of the changes in the pH during the pH swing times, i.e., by a controlled pH swing, on the morphology of the TiO2 particles was investigated. The photocatalytic properties of the TiO2 catalysts prepared by controlled pH swing were compared with TiO2 particles prepared without adjusting the pH during the swing times. The photocatalytic degradation reaction of these TiO2 catalysts was investigated by comparing their effectiveness in 2-propanol oxidation. The experimental results showed that the TiO2 photocatalysts prepared without adjusting the pH performed better in controlling the important parameters of the catalysts such as particle size, surface area, anatase/rutile phase ratio and pore size, as well as pore volume than the TiO2 photocatalysts prepared by a controlled pH swing method.

Keywords

TiO2 photocatalysts pH swing method photocatalytic degradation of 2-propanol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Anpo,Bull. Chem. Soc. Jpn. 77, 1427 (2004).CrossRefGoogle Scholar
  2. 2.
    J. M. Herrmann, C. Guillard, J. Disdier, C. Lehaut, S. Malato and J. Blanco,Appl. Catal. B: Environ. 35, 281 (2002).CrossRefGoogle Scholar
  3. 3.
    C. Y. Wang, J. Rabani, D. W. Bahnemann and J. K. Dohrmann,J. Photochem. Photobiol. A: Chem. 148, 169 (2002).CrossRefGoogle Scholar
  4. 4.
    C. Morterra, G. Cerrato, M. Visca and D. M. Lenti,J. Mater. Chem. 2, 341 (1992).CrossRefGoogle Scholar
  5. 5.
    M. Matsuoka, M. Kitano, M. Takeuchi, M. Anpo and J. M. Thomas,Top. Catal. 35, 305 (2005).CrossRefGoogle Scholar
  6. 6.
    N. G. Park, J. V. D. Lagemaat and A. J. Frank,J. Phys. Chem. B 104, 8989 (2000).CrossRefGoogle Scholar
  7. 7.
    X. Z. Le, H. Liu, L. F. Cheng and H. J. Tong,Environ. Sci. Technol. 37, 3989 (2003).CrossRefGoogle Scholar
  8. 8.
    Y. V. Kolenko, B. R. Churagulov, M. Kunst, L. Mazerolles and C. C. Justin,Appl. Catal. B: Environ. 54, 51 (200).Google Scholar
  9. 9.
    S. Bakardjieva, J. Subrt, V. Stengl, M. J. Dianez and M. J. Sayagues,Appl. Catal. B: Environ 58, 193 (2005).CrossRefGoogle Scholar
  10. 10.
    G. Q. Guo, J. K. Whitesell and M. A. Fox,J. Phys. Chem. B 109, 18781 (2005).CrossRefGoogle Scholar
  11. 11.
    H. Yamashita, Y. Ichihashi, M. Harada, G. Stewart, M. A. Fox and M. Anpo,J. Catal. 158, 97 (1996).CrossRefGoogle Scholar
  12. 12.
    M. Anpo and H. Yamashita,Catal. Surv. Asia 8, 35 (2004).CrossRefGoogle Scholar
  13. 13.
    M. Anpo and M. Takeuchi,J. Catal. 216, 505 (2003).CrossRefGoogle Scholar
  14. 14.
    B. Neppolian, H. Yamashita, Y. Okada, H. Nishijima and M. Anpo,Catal. Lett. 105, 111 (2005).CrossRefGoogle Scholar
  15. 15.
    J. F. Zhu, J. L. Zhang, F. Chen, K. Iino and M. Anpo,Top. Catal. 35, 261 (2005).CrossRefGoogle Scholar
  16. 16.
    B. Neppolian, H. S. Jie, J. P. Ahn, J. K. Park and M. Anpo,Chem. Lett. 33, 1562 (2004).CrossRefGoogle Scholar
  17. 17.
    D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh and M. C. Thurnauer,J. Phys. Chem. B 107, 4545 (2003).CrossRefGoogle Scholar
  18. 18.
    T. Ohno, K. Tokieda, S. Higashida and M. Matsumura,Appl. Catal. A: Gen. 244, 383 (2003).CrossRefGoogle Scholar
  19. 19.
    T. Ohno, K. Sarukawa and M. Matsumura,J. Phys. Chem. B 105, 2417 (2001).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • B. Neppolian
    • 1
  • D. R. Eddy
    • 1
  • S. Sakai
    • 1
  • Y. Okada
    • 2
  • H. Nishijima
    • 2
  • M. Anpo
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringOsaka Prefecture UniversityOsakaJapan
  2. 2.Chiyoda Corporation, R & D CentreYokohamaJapan

Personalised recommendations