Advertisement

Umweltwissenschaften und Schadstoff-Forschung

, Volume 17, Issue 1, pp 36–49 | Cite as

Risikobewertung von Perfluortensiden als Beitrag zur aktuellen Diskussion zum REACH-Dossier der EU-Kommission

  • Marc Fricke
  • Uwe Lahl
EU-Chemikalienpolitik

Zusammenfassung

Hintergrund

Die Analyse der intrinsischen Wirkungen der perfluorierten organischen Tenside (PFT) zeigt ein charakteristisches Gesamtbild der Gruppe:
  • -hohe Polarität

  • -hohe thermische und chemische Stabilität

  • -ubiquitäre Verteilung

  • -kein biologischer Abbau

  • -gehäufte Toxizität

Zudem weisen einzelne Vertreter dieser Substanzgruppe (z.B. PFOS) eine sehr hohe Verweilzeit im menschlichen Körper auf. Die toxischen Eigenschaften variieren und sind, ebenso wie die Mechanismen für die globale Verteilung, nicht vollständig aufgeklärt.

Zwischenzeitlich wurden (werden) einzelne Vertreter dieser Substanzgruppe vom Markt genommen.

Der vorliegende Beitrag zeigt, dass es mittels des geplanten EU-Chemikalienrechts (REACH) zukünftig verhindert werden kann, dass derartige Stoffe erst dann reguliert werden, wenn sie bereits in der Umwelt verteilt sind, die Schäden also bereits eingetreten sind. Allerdings ist es hierfür erforderlich, die Anforderungen an die Registrierung von Stoffen im unteren Tonnagebereich (1–10 Mg/a) um einzelne Tests zu ergänzen (insbesondere die biologische Abbaubarkeit).

Ziel der Arbeit

Ziel der Arbeit war die Analyse der intrinsischen Eigenschaften und der Risiken einer Untergruppe der fluororganischen Stoffe.

Ergebnis

In Form eines Übersichtsartikels werden die toxischen Wirkungen und Eigenschaften einer Stoffgruppe aus den rund 30.000 Altstoffen dargestellt. Für die laufende Diskussion um die Neujustierung der europäischen Altsstoffbearbeitung (REACH) zeigt sich, dass die zum Teil sehr komplexen Wirkungs- und Risikoanalysen nicht durch standardisierte Testanforderungen abgefragt werden können. Staatlicherseits werden über REACH nur die Startpunkte für diesen Prozess in Form vorgegebener Basistests gesetzt, die dann, im Falle der Auffälligkeit eines Stoffes (oder einer Stoffgruppe) eingenverantwortlich ggf. im Rahmen der Evaluierung vertieft werden müssen. Wichtig ist daher, dass die Basisanforderungen von REACH richtig ausgew’:ahlt sind. Hier zeigt diese Untersuchung entscheidende Defizite des Kommissionsvorschlags.

Schlussfolgerung

Der Basisdarensatz im niedrigtonnagigen Bereich (1–10 Mg/a) muss insbesondere um einen obligatorischen Test zur biologischen Abbaubarkeit ergänzt werden. Die im REACH-Dossier vorhandene Möglichkeit, Substanzen über Gruppenbetrachtungen bewerten zu können (SAR, QSAR u.a.) sind zu begrüßen.

Schlagwörter

Autorisierung von besonders gefährlichen Stoffen biologische Abbaubarkeit perfluorierte organische Tenside PFOS, PFOA (Q) SAR REACH Risikobewertung für alle Stoffe Stoffgruppenansatz umfassende Daten und Informationen zu allen relevanten Stoffen Toxizität 

Risk evaluation of perfluorinated surfactants as contribution to the current debate on the EU Commission’s REACH document

Abstract

Background

The analysis of the intrinsic effects of perfluorinated organic surfactants shows the group to have a characteristic overall picture:
  • -high polarity

  • -high thermal and chemical stability

  • -ubiquitous distribution

  • -non-biodegradability

  • -multiple toxicity

In addition, certain substances belonging to this group (e.g. PFOS) exhibit a very long retention time in the human body. Toxic properties vary and, like the mechanisms for global distribution, have not been fully clarified.

In the meantime, individual members of this substance group have been (are being) removed from the market.

This report shows that in future the planned EU chemicals law (REACH) can be used to prevent such substances being regulated after they have been distributed in the environment and thus after damage has already occurred. To this end, however, the requirements for registration for low tonnage substances (1–10 tonnes/a) must be supplemented with specific tests (in particular on biodegradability)

Aim and Scope

The aim of the work was to analyse the intrinsic properties and risks of a subgroup of fluorinated organic substances.

Results

A summarising article describes the toxic effects and properties of a group of substances selected from the approximately 30,000 existing substances. With regard to the ongoing debate on revising the European regulations of existing substances (REACH). it is apparent that standardised test requirements cannot be applied to impact and risk analyses which are at times highly complex. For governments, REACH only provides the starting points for this process in the form of prescribed standard tests. If a substance (or a substance group) draws attention, more detailed tests must be carried out by the industry itself in the framework of responsible care and in the framework of the evaluation step of REACH. It is therefore important that the standard requirements of REACH are selected appropriately. In this respect, the study reveals some serious deficiencies in the Commission proposal.

Conclusion

The standard information for low tonnage substances (1–10 tonnes/a) must be supplemented in particular with an obligatory test on biodegradability. The possibility provided by the REACH dossier to evaluate substances on the basis of group observarions (SAR, QSAR e.g.) is to be welcomed.

Keywords

Authorisation of extremely hazardous substances biodegradability extensive data and information about all relevant substances perfluorinated organic surfactants PFOS PFOA (Q)SAR REACH risk evaluation of all compounds supstance approach toxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Siehe hierzu die Reaktionen führender Stakeholder auf die Broschüre: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (2004): REACH — Magazin für eine moderne ChemieGoogle Scholar
  2. [2]
    Europäische Umweltagentur (2002): Late Lessons From Early Warnings Environmental Issue, Report No 22Google Scholar
  3. [3]
    Gilliland FD (1992): Fluorocarbons and Human Health: Studies in an Occupational Cohort PhD Thesis, U.S. EPA Public Docket AR226-0473Google Scholar
  4. [4]
    Stock, NL, Ellis DA, Deleebeeck, L, Muir, DCG, Mabury SA (2004): Environ Sci Technol 38, 1693–1699CrossRefGoogle Scholar
  5. [5]
    3M Company (1999): Fluorochemical Use, Distribution and Release Overview, May 26, U.S. EPA Public Docket AR226-0550Google Scholar
  6. [6]
    Bingman TS, Buck RC, Korzeniowski SH, Stadler JC (2002): DuPont Fluorotelomer Product Stewardship Update, November 25, U.S. EPA Public Docket AR226-1147Google Scholar
  7. [7]
    Einen detaillierten Überblick über Produkte, in denen PFTs vorkommen und aus denen sie freigesetzt werden können gibt: Environmental Working Group (2003): PFCs — A Family of Chemicals that Contaminate the Planet March, Internetseite: <www.ewg.org/reports/pfcworld/>Google Scholar
  8. [8]
    Risk and Policy Analysts (2004): Perfluorooctane Sulphonate, Risk Reduction Strategy and Analysis of Advantages and Drawbacks — Prepared for DEFRA, August, Internetseite: <www.defra.gov.uk/environment/chemicals/ukpolicy.htm>Google Scholar
  9. [9]
    U.S. Evironmental Protection Agency (2000): Perfluorooctyl Sulfonates: Proposed Significant New Use Rule. Fed Regist 65, 62319–62333Google Scholar
  10. [10]
    3M Company (2000): Phase-Out Plan for PFOS-Based Products, July 7, U.S. EPAGoogle Scholar
  11. [11]
    Ellis DA, Mabury SA, Martin JW, Muir DCG (2001): Nature 412, 321–324CrossRefGoogle Scholar
  12. [12]
    Telomer Research Program (TRP) Update (2002): November 25, U. S. EPA Public Docket AR226-1141Google Scholar
  13. [13]
    OECD (2002): Hazard Assessment of Perfluorooctane Sulfonate (PFOS) and its Salts, November 21 ENV/JM/RD (2002) 17/FINALGoogle Scholar
  14. [14]
    3M Company (2000): Draft Initial Assessment Report Perfluorooctane Sulfonic Acid and its Salts, October 2, U.S. EPA Public Docket AR226-0978Google Scholar
  15. [15]
    Vanden, Heuvel JP, Kuslikis BI, Peterson RE (1992): Chem-Biol Interact 82, 317–328; Han X, Snow TA, Kemper RA, Jepson GW (2003): Chem Res Toxicol 16, 775–781CrossRefGoogle Scholar
  16. [16]
    3M Company (2002): 104-Week Dietary Chronic Toxicity and Carcinogenicity Study with Perfluorooctane Sulfonic Acid Potassium Salt (PFOS; T-6295) in Rats Final Report 3M T-6295 (Covance study no.: 6329-183), Volumes I–IX, 4068 pages, January 2, U.S. EPA Public Docket AR 226–1070a; 3M Company (2001): 104-Week Dietary Carcinogenicity Study with Narrow Range (98.1%) N-Ethyl Perfluorooctanesulfonamido Ethanol in Rats Final Report 3M T-6316.1 (Covance study no.: 6329-212), Volumes I–XII 4873 pages, December 13, U.S. EPA Public Docket AR 226–1068a; Riker Laboratories (1983): Two Year Oral (Diet) Toxicity/Carcinogenicity Study of Fluorochemical FM 3924 in Rats conducted for 3M Company, May, U.S. EPA Public Docket AR226-0257Google Scholar
  17. [17]
    3M Environmental Laboratory (2000): Analytical Laboratory Report on the Determination of the Presence and Concentration of Potassium Perfluorooctanesulfonate in the Serum and Liver of Sprague-Dawley Rats Exposed to PFOS via Gavage, April 19, U.S. EPA Public Docket AR 226–1070aGoogle Scholar
  18. [18]
    International Research and Development Corporation (1978): Ninety-Day Subacute Rhesus Monkey Toxicity Study, With Fluorad Fluorochemical Surfactant FC-95, December 18, U.S. EPA Public Docket AR226-0137Google Scholar
  19. [19]
    Seacat AM, Thomford PJ, Hansen KJ, Olsen GW, Case MT, Butenhoff JL (2002): Toxicol Sci 68, 249–264CrossRefGoogle Scholar
  20. [20]
    Butenhoff J, Costa G, Elcombe C, Farrar D, Hansen K, Iwai H, Jung R, Kennedy Jr G, Lider P, Olsen G, Thomford P (2002): Toxicol Sci 69, 244–257CrossRefGoogle Scholar
  21. [21]
    U.S. EPA OPPT (2003): Preliminary Risk Assessment of the Developmental Toxicity Associated with Exposure to Perfluorooctanoic Acid and its SaltsGoogle Scholar
  22. [22]
    Biegel LB, Hurtt ME, Frame, SR, O’Connor JC, Cook JC (2001): Toxicol Sci 60, 44–55CrossRefGoogle Scholar
  23. [23]
    Solenus A-K, Messing Eriksson A, Högström C, Kimland M, DePierre JW (1993): Pharmacol Toxicol 72, 90–93CrossRefGoogle Scholar
  24. [24]
    Starkov AA, Wallace KB (2002): Toxicol Sci 66, 244–252CrossRefGoogle Scholar
  25. [25]
    Telomer Research Program (2003): May 2, U.S. EPA Public Docket AR226-1340Google Scholar
  26. [26]
    Young JA, Cook DI, Lingard JM, van Lennep EW, Wegman E (1996): in Klinke R Silbernagl S (Hrsg), Lehrbuch der Physiologie. Georg Thieme Verlag Stuttgart 387–433Google Scholar
  27. [27]
    DePierre JW (2002): in, Neilson AH (ed),Handbook of Environmental Chemistry. Springer-Verlag, Berlin, 2002, Vol. 3, Part N 203–248Google Scholar
  28. [28]
    Rosenkranz HS, Pollack N, Cunningham AR (2000): Carcinogenesis 21, 1007–1011CrossRefGoogle Scholar
  29. [29]
    Upham BL, Deocampo ND, Wurl B, Trosko JE (1998): Int J Cancer 78, 491–495CrossRefGoogle Scholar
  30. [30]
    Hu W, Jones PD, Upham BL, Trosko JE, Lau C, Giesy JP (2002): Toxicol Sci 68, 429–436CrossRefGoogle Scholar
  31. [31]
    Taves DR (1968): Nature 217, 1050–1051CrossRefGoogle Scholar
  32. [32]
    Hansen KJ, Clemen LA, Ellefson ME, Johnson HO (2001): Environ Sci Technol 35, 766–770CrossRefGoogle Scholar
  33. [33]
    3M Company (2000): Draft Initial Assessment, Report Perfluorooctane Sulfonic Acid and its Salts, October 2, U.S. EPA Public Docket AR226-0978Google Scholar
  34. [34]
    U.S. EPA Public Docket AR226-1388; U.S. EPA Public Docket AR226-1393Google Scholar
  35. [35]
    3M Company (2003): Descriptive Analysis of Serum Perfluorooctanoate (PFOA) and Perfluorooctanesulfonate (PFOS) Concentrations of Antwerp Employee Participants from the 2003 Fluorochemical Medical Surveillance Program, August 14, U.S. EPA Public Docket AR226-1781aGoogle Scholar
  36. [36]
    Olsen GW, Hansen KJ, Stevenson LA,Burris JM, Mandel JH (2003): Environ Sci Technol 37, 888–891CrossRefGoogle Scholar
  37. [37]
    Umweltbundesamt (2004): Untersuchung archivierter Proben der Umweltprobenbank des Bundes auf perfluorierte organische VerbindungenGoogle Scholar
  38. [38]
    Kuklenyik Z, Reich JA, Tully JS, Needham LL, Calafat AM (2004): Environ Sci Technol 38 3698–3704CrossRefGoogle Scholar
  39. [39]
    Kärrman, A, van Bavel B, Järnberg U, Hardell L, Lindström G (2004): Organohalogen 66, 4058–4062Google Scholar
  40. [40]
    Inoue K, Okada F, Ito R, Kato S, Sasaki S, Nakajima S, Uno A, Saijo Y, Sata F, Yoshimura Y, Kishi R, Nakazawa H (2004): Environ Health Perspec 112, 1204–1207Google Scholar
  41. [41]
    Kannan K, Senthil Kumar K, Corsolini A, Aldous KM (2003): Organohalogen Comp 64, 29–32Google Scholar
  42. [42]
    Kannan K, Corsolini A, Falandysz J, Fillmann G, Senthil Kumar K, Loganathan BG, Mohd MA, Olivero J, van Wouve N, Yang JH, Aldous KM (2004): Environ Sci Technol 38, 4489–4495CrossRefGoogle Scholar
  43. [43]
    Martin JW, Mabury SA, Solomon KR, Muir DCG (2003): Environ Toxicol Chem 22, 196–204CrossRefGoogle Scholar
  44. [44]
    MacDonald MM, Warne AL, Stock NL, Mabury SA, Solomon KR, Sibley PK (2004): Environ Toxicol Chem 23, 2116–2123CrossRefGoogle Scholar
  45. [45]
    U.S. EPA OPPT (2000): Revised draft hazard assessment of perfluorooctanoic acid and its salts, U.S.EPA Public Docket AR226-1136Google Scholar
  46. [46]
    T. R. Wilbury Laboratories (1995): conducted for 3M Environmental Laboratory, July 13, U.S. EPA Public Docket AR226-1030aGoogle Scholar
  47. [47]
    T. R. Wilbury Laboratories (1995): conducted for 3M Environmental Laboratory, August 3, U.S. EPA Public Docket AR226-1030aGoogle Scholar
  48. [48]
    T. R. Wilbury Laboratories (1995): conducred for 3M Environmental Laboratory, November 21, U.S. EPA Public Docket AR226-1030aGoogle Scholar
  49. [49]
    T. R Wilbury Laboratories (1996): conducted for 3M Environmental Laboratory, March 25, U.S. EPA Public Docket AR226-1030aGoogle Scholar
  50. [50]
    T. R. Wilbury Laboratories (1996): conducted for 3M Environmental Laboratory, March 7, U.S. EPA Public Docket AR226-1030aGoogle Scholar
  51. [51]
    Handbook of Environmental Chemistry (Hutzinger O, ed) (2002): Organofluorines. In: Neilson AH (ed), Springer-Verlag Berlin, Vol. 3, Part N; Gribble GW, 121–136; Neilson AH, Allard A-S, pp 137–202Google Scholar
  52. [52]
    Für die strukturell einfachste niedermolekulare perfluorierte Carbonsäure Trifluoressigsäure (TFA) wird neben der industriellen auch eine natürliche Herkunft vermutet: Frank H, Christoph EH, Holm-Hansen O, Bullister JL (2002): Environ Sci Technol 36, 12–15CrossRefGoogle Scholar
  53. [53]
    Guy WS, Taves DR, Brey Jr WS (1976): Organic Fluorocompounds in Human Plasma: Prevalence and Characterization. Biochemistry Involving Carbon-Fluorine Bonds, ACS Symposium, 117–134Google Scholar
  54. [54]
    RPA & BRE (2004): Draft Environmental Risk Evaluation Report: Perfluorooctane Sulphonate (PFOS) prepared for the National Centre of Ecotoxicology and Hazardous Substances, Environment AgencyGoogle Scholar
  55. [55]
    DuPont Telomer Manufacturing Sites (2003): Environmental Assessment of PFOA Levels in Air and Water, September, U.S. EPA Public Docket AR226-1534; Groundwater Program (2003): Ammonium Perfluorooctanoate (C8) Groundwater Investigation Steering Team Report, August, U.S. EPA Public Docket AR226-1517Google Scholar
  56. [56]
    Taniyasu S, Kannan K, Horii Y, Hanari N, Yamashita N (2003): Environ Sci Technol 37, 2634–2639CrossRefGoogle Scholar
  57. [57]
    So MK, Taniyasu S, Yamashita N, Giesy JP, Zheng J, Fang Z, Im SH, Lam PKS (2004): Environ Sci Technol 38, 4056–4063CrossRefGoogle Scholar
  58. [58]
    Taniyasu S, Kannan K, Horii Y, Yamashita N (2002): Dioxin 2002, Barcelona, SpainGoogle Scholar
  59. [59]
    Boulanger B, Vargo J, Schnoor, JL, Hornbuckle KC (2004): Environ Sci Technol 38, 4064–4070CrossRefGoogle Scholar
  60. [60]
    Hansen KJ, Johnson HO, Eldridge JS, Butenhoff JL, Dick LA (2002): Environ Sci Technol 36, 1681–1685CrossRefGoogle Scholar
  61. [61]
    Moody CA, Field JA (1999): Environ Sci Technol 33, 2800–2806; Schultz MM, Barofsky DF, Field JA (2004): Environ Sci Technol 38, 1828–1835CrossRefGoogle Scholar
  62. [62]
    Moody CA, Martin JW, Kwan WC, Muir DCG, Mabury SA (2002): Environ Sci Technol 36, 545–551CrossRefGoogle Scholar
  63. [63]
    Dimitrov S, Kamenska V, Walker JD, Windle W, Purdy R, Lewis M, Mekenyan O (2004): SAK und QSAR in Environ Research 15, 69–82CrossRefGoogle Scholar
  64. [64]
    Lei YD, Wang F, Mathers D, Mabury SA (2004): J. Chem Eng Data 49, 1013–1022CrossRefGoogle Scholar
  65. [65]
    Martin JW, Muir DCG, Moody CA, Ellis DA, Kwan WC, Solomon KR, Mabury SA (2002): Anal Chem 74, 584–590; Stock NL, Lau FK, Ellis DA, Martin JW, Muir DCG, Mabury SA (2004): Environ Sci Technol 38, 991–996CrossRefGoogle Scholar
  66. [66]
    Shoeib M, Harner T, Ikonomou M, Kannan K (2004): Environ Sci Technol 38, 1313–1320CrossRefGoogle Scholar
  67. [67]
    Tomy GT, Tittlemier SA, Palace VP, Budakowski WR, Braekevelt E, Brinkworth L, Friesen K (2004): Environ Sci Technol 38, 758–762CrossRefGoogle Scholar
  68. [68]
    Xu L, Krenitsky DM, Seacat AM, Butenhoff JL, Anders MW (2004): Chem Res Toxicol 17, 767–775CrossRefGoogle Scholar
  69. [69]
    3M Strategic Toxicology Laboratory (2000): Toxicokinetic Study of Perfluorooctane Sulfonamide (PFOSA; T-7132.2) in RatsGoogle Scholar
  70. [70]
    3M Environmental Laboratory (2001): Determination of the Presence and Concentration of PFOS, PFOSA, M556, and M570 in the 13-Week Dietary Study of Crl: CD (SD) IGS BR RatsGoogle Scholar
  71. [71]
    3M Environmental Laboratory (2001): Analytical Study 2 (N-Ethylperfluorooctane su 1 fonamido)-ethanol in Two Generation Rat ReproductionGoogle Scholar
  72. [72]
    3M Environmental Laboratories (2001): The 18-Day Aerobic Biodegradation Study of Perfluorooctanesulfonyl-Based Chemistries February 23 U.S. EPA Public Docket AR226-1030aGoogle Scholar
  73. [73]
    Kaiser MA, Cobranchi DP, Chai Kao C-P, Krusic PJ, Marchione AA, Buck RC (2004): J Chem Eng Data 49, 912–916CrossRefGoogle Scholar
  74. [74]
    Stock NL, Ellis DA, Deleebeeck L, Muir DCG, Mabury SA (2004): Environ Sci Technol 38, 1693–1699CrossRefGoogle Scholar
  75. [75]
    von Werner K, Wrackmeyer B (1986): J Fluorine Chem 31, 183–196CrossRefGoogle Scholar
  76. [76]
    Ellis DA, Mabury SA (2003): J Am Soc Mass Spectrom 14, 1177–1191CrossRefGoogle Scholar
  77. [77]
    Ellis DA, Martin JW, Mabury SA, Hurley MD, Sulbaek Andersen MP, Wallington TJ (2003): Environ Sci Technol 37, 3816–3820CrossRefGoogle Scholar
  78. [78]
    Ellis DA, Martin JW, De Silva AO, Mabury SA, Hurley MD, Sulbaek Andersen MP, Wallington TJ (2004): Environ. Sci Technol 38, 3316–3321; Hurley MD, Ball JC, Wallington TJ, Sulbaek Andersen MP, Ellis DA, Martin JW, Mabury SA (2004): J Phys Chem A 108, 5635–5642CrossRefGoogle Scholar
  79. [79]
    CNRS-LCSR (2003): Study of the Atmospheric Fate of Fluorinated Alcohols — prepared for TRP July U.S EPA Public Docket AR226-1521Google Scholar
  80. [80]
    Pace Analytical Services (2002): Biodegradation Screen Study for Telomer-Type Alcohols —prepared for 3M Company November 6 U.S. EPA Public Docket AR226-1149; DuPont (2003): Accelerated Biodegradation of 8∶2 Telomer B Alcohol — A Preliminary Screening Study, March 20, U.S EPA Public Docket AR226-1264; Dinglasan MJA, Ye Y, Edwards EA, Mabury SA (2004): Environ Sci Technol 38, 2857-2864Google Scholar
  81. [81]
    Key BD, Howell RD, Criddle CS (1998): Environ Sci Technol 32, 2283–2287CrossRefGoogle Scholar
  82. [82]
    Hagen DF, Belisle J, Johnson JD, Venkateswarlu P (1981): Anal Biochem 118, 336–343CrossRefGoogle Scholar
  83. [83]
    3M Company (1999): Fluorochemical Use, Distribution and Release Overview May 26 U.S. EPA Public Docket AR226-0550Google Scholar
  84. [84]
    Giesy JP, Kannan K (2001): Environ Sci Technol 35, 1339–1342; Kannan K, Franson JC, Bowerman WW, Hansen KJ, Jones PD, Giesy JP (2001): Environ Sci Technol 35, 3065–3070CrossRefGoogle Scholar
  85. [85]
    Kannan K, Koistinen J, Beckmen K, Evans T, Gorzelany JF, Hansen KJ, Jones PD, Helle E, Nyman M, Giesy JP (2001): Environ Sci Technol 35, 1593–1598CrossRefGoogle Scholar
  86. [86]
    Martin JW, Smithwick MM, Braune BM, Hoeckstra PF, Muir DCG, Mabury SA (2004): Environ Sci Technol 38, 373–380CrossRefGoogle Scholar
  87. [87]
    Kannan K, Newsted J, Halbrook RS, Giesy JP (2002): Environ Sci Technol 36, 2556–2571Google Scholar
  88. [88]
    Kannan K, Corsolini S, Falandysz J, Oehme G, Focardi S, Giesy JP (2002): Environ Sci Technol 36, 3210–3216CrossRefGoogle Scholar
  89. [89]
    van de Vijver KI, Hoff PT, Das K, van Dongen W, Esmans EL, Jauniaux T, Bouquegneau J-M, Blust R, de Coen W (2003): Environ Sci Technol 37, 5545–5550CrossRefGoogle Scholar
  90. [90]
    Hoff PT, van de Vijer K, van Dongen W, Esmans EL, Blust R, de Coen W (2003): Environ Toxicol Chem 22, 608–614CrossRefGoogle Scholar
  91. [91]
    Hoff PT, Scheirs J, van de Vijer K, van Dongen W, Esmans EL, Blust R, de Coen W (2004): Environ Health Perspec 112, 681–686Google Scholar
  92. [92]
    3M Environmental Laboratory (2001): 26-Week Capsule Toxicity Study with Ammonium Perfluorooctanoate (APFO/POAA) in Cynomolgus Monkeys; Determination of the Presence and Concentration of Perfluorooctanoate Fluorochemical in Liver, Serum, Urine and Feces Samples. June 11, U.S. EPA Public Docket AR226-1052aGoogle Scholar
  93. [93]
    U.S EPA Public Docket AR226-1307-1Google Scholar
  94. [94]
    U.S. EPA Public Docket AR226-629Google Scholar
  95. [95]
    U.S. Environmental Protection Agency (2003): Perfluorooctanoic Acid (PFOA), Fluorinated Telomers; Request for Comment, Solicitation of Interested Parties for Enforceable Consent Agreement Development, and Notice of Public Meeting. Federal Register 68, 18626–18633Google Scholar
  96. [96]
    Hogue C (2004): Fluorotelomer to the test. Chemical & Engineering News 82, 6–6Google Scholar
  97. [97]
    Working Document 180/04 (Ad-hoc Working Party on Chemicals), Subject: Policy paper on additional data requirements received from the German delegation. Brüssel, 22. Nov. 2004Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.Bundesministerium für UmweltNaturschutz und ReaktorsicherheitBonn

Personalised recommendations