Advertisement

Umweltwissenschaften und Schadstoff-Forschung

, Volume 14, Issue 1, pp 45–51 | Cite as

Passivsammler für die zeitintegrierte chemische und toxikologische Überwachung des Schadstoffgehaltes in Grund- und Oberflächenwasser

  • Stephanie K. Bopp
  • Kristin Schirmer
Übersichtsbeiträge

Zusammenfassung

Die Verfügbarkeit von qualitativ hochwertigem Wasser ist ein wichtiger Aspekt für den Schutz der belebten Umwelt und der Lebensqualität des Menschen. Bei der Überwachung der Qualität von Grund- und Oberflächenwasser kommt der Probennahme eine entscheidende Rolle zu. Dabei ist die zeitintegrierte Anreicherung von Schadstoffen in der Umwelt mittels passiver Probennehmer eine attraktive Alternative zur konventionellen Stichprobennahme. Durch einein situ Aufkonzentrierung ermöglichen passive Probennehmer das Erfassen auch gering konzentrierter Kontaminanten bei gleichzeitiger Reduzierung von Kosten und Aufwand für eine kontinuierliche Überwachung. Man erhält Informationen über den gesamten Beprobungszeitraum und vermeidet Transport und Lagerung großer Probenvolumina. Matrixeffekte werden durch die selektive Anreicherung verringert.

Verschiedene Passivsammler werden bisher zur Beprobung im aquatischen Bereich eingesetzt. Anfangs wurden wassergefüllte Dialyse-Schläuche verwendet, um Spurenelemente zu bestimmen. Später wurden Lösemittel-gefüllte Sammler und Trioleingefüllte “Semipermeable Membrane Devices” (SPMDs) eingesetzt. In neueren Entwicklungen werden als Sammler-Phase sorptive Festphasen verwendet. Beispiele hierzu sind die “Solid Phase Microextraction” (SPME) und das “Membrane Enclosed Sorptive Coating” System (MESCO). Neben der Miniaturisierung haben diese beiden Probennehmer den Vorteil, dass sie thermodesorbierbar sind und somit ohne den Einsatz von Lösemitteln chemisch analysiert werden können.

Gegenwärtig werden die gewonnenen Proben vom Probennehmer mittels Lösemitteln extrahiert oder thermodesorbiert und meist chemisch analysiert. Im Sinne einer kombinierten chemisch-biologischen Analyse wäre es jedoch wünschenswert, die passive Probennahme auch direkt mit toxikologischen Bewertungsverfahren zu verknüpfen. Es ist deshalb unser Ziel, einen passiven Probennehmer so zu konstruieren, dass die gesammelten sammelten Proben direkt, das heißt ohne Extraktion, in toxikologischen Tests untersucht werden können, wobei der Sammler als Expositionskammer dient. Das dem zu Grunde liegende Prinzip ist die Remobilisierung oder die direkte Verfügbarkeit adsorbierter Kontaminanten für die biologischen Testsysteme.

Schlagwörter

Dosimeter Grundwasser Monitoring, chemisches Monitoring, toxikologisches Oberflächenwasser Passivsammler 

Abkürzungen/Abbreviations

MESCO

Membrane Enclosed Sorptive Coating

POCIS

Polar Organic Chemical Integrative Sampler

SPMD

Semipermeable Membrane Devices

SPME

Solid Phase Microextraction

Passive samplers for the time-integrated monitoring of contaminants in groundwater and surface water

Abstract

The availability of high-quality water plays a pivotal role for the protection of the ecosystem and the quality of human life. An important step in assessing ground and surface water quality is sampling. The time-integrated accumulation of environmental contaminants by passive sampling is an attractive alternative to conventional snap-shot sampling. Thein situ accumulation during passive sampling allows the detection of even lowconcentrated contaminants and reduces cost and time for continuous monitoring. Passive sampling provides information on the whole sampling period and avoids the transport and storage of large sample volumes. Matrix effects are reduced due to the selective enrichment.

Various passive samplers have been developed for sampling in aqueous media. Early developments used water filled dialysis tubes for the sampling of trace elements. Later on, solvent filled devices and triolein-filled semipermeable membrane devices (SPMDs) were deployed. More recent developments use a solid rather than a liquid sorbent as the receiving phase. Examples of this are the solid phase microextraction (SPME) and the membrane enclosed sorptive coating (MESCO). In addition to comprising miniature devices, SPMEs as well as MESCO are thermodesorbable and, as such, no longer require solvent extraction.

Conventionally the sampled contaminants are removed from the passive sampling devices by solvent extraction or thermodesorption in order to be analyzed chemically. For an in-depth analysis of sampled analytes, however, it would be advantageous to modify passive sampling such that sampled contaminants can also be analyzed biologically. Thus, it is our goal to construct a passive sampling device that serves both as a sampling device as well as an exposure chamber for toxicity testing. The principle underlying this technology is the bioavailability of sorbed contaminants, thereby eliminating the need for solvent extraction.

Keywords

Dosimeter groundwater monitoring, chemical monitoring, toxicological passive sampler surface water 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alvarez DA, Huckins JN, Petty JD (1999): Progress towards the development of a passive, in situ, SPMD-like sampler for hydrophilic organic contaminants in aquatic environment. 20th Annual National Meeting of the Society of Environmental Toxicology and Chemistry, November, 1999, Philadelphia, PA, PWA096.Google Scholar
  2. Arthur CL, Pawliszyn J (1990): Solid phase microextraction with thermal desorption using fused silica optical fibers. Analytical Chemistry62, 2145–2148CrossRefGoogle Scholar
  3. Baun B, Jensen SD, Bjerg PL, Christensen TH, Nyholm N (2000): Toxicity of organic chemical pollution in groundwater downgradient of a landfill (Grinsted, Denmark). Environmental Science and Technology34, 1647–1652CrossRefGoogle Scholar
  4. Benes P, Steinnes E (1974): In situ dialysis for the detemination of the stat of trace elements in natural waters. Water Research8, 947–953CrossRefGoogle Scholar
  5. Booij K, Sleiderink HM, Smedes F (1998): Calibrating the uptake kinetics of semipermeable membrane devices using exposure standards. Environmental Toxicology and Chemistry17, 1236–1245CrossRefGoogle Scholar
  6. Brack W, Altenburger R, Ensenbach U, Möder M, Segner H, Schüürmann G (1999): Bioassay-directed identification of organic toxicants in river sediment in the industrial region of Bitterfeld (Germany) — A contribution to hazard assessment. Archives of Environmental Contamination and Toxicology37, 164–174CrossRefGoogle Scholar
  7. Brown RS, Akhtar P, Akerman J, Hampel L, Kozin IS, Villerius LA, Klamer HJC (2001): Partition controlled delivery of hydrophobic substances in toxicity tests using poly(dimethylsiloxane) (PDMS) films. Environmental Science and Technology35, 4097–4102CrossRefGoogle Scholar
  8. Burmaster DE, Menzie CA, Freshman JS (1991): Assessment of methods for estimating aquatic hazards at superfund-type sites: a cautionery tale. Environmental Toxicology and Chemistry10, 827–842CrossRefGoogle Scholar
  9. Davison W, Fones G, Harper M, Teasdale P, Zhang H (2000): Dialysis, DET and DGT: in situ diffusional techniques for studying water, sediments and soils. In: Buffle J, Horvai G (Hrsg): In situ monitoring of aquatic systems — chemical analysis and speciation. Wiley, pp. 495–569Google Scholar
  10. Davison W, Zhang H (1994): In situ speciation measurements of trace components in natural waters using thin-film gels. Nature367, 546–548CrossRefGoogle Scholar
  11. DiGiano FA, Elliot D, Leith D (1988): Application of passive dosimetry to the detection of trace organic contaminants in water. Environmental Science and Technology22, 1365–1367CrossRefGoogle Scholar
  12. Effenberger M, Weiss H, Popp P, Schirmer M (2001): Untersuchungen zum Benzininhaltstoff Methyl-tertiär-butylether (MTBE) in Grund- und Oberflächenwasser in Deutschland. Grundwasser6, 51–60CrossRefGoogle Scholar
  13. Einfeld W, Koglin EN (2000): Groundwater sampling technologies — Gore-Sorber® water quality monitoring, Environmental Technology Verification Report. EPA/600/R-00/091Google Scholar
  14. Grathwohl P (1999): Dosimeter Deutsches Patent [DE 198 30 413 A1]Google Scholar
  15. Haas R, Oeste FD (2001): Passivsammler zur Wasseruntersuchung. UWSF — Z Umweltchem Ökotox13, 2–4Google Scholar
  16. Helma C, Eckl P, Gottmann E, Kassie F, Rodinger W, Steinkeller H, Windpassinger C, Schulte-Hermann R (1998): Genotoxic and ecotoxic effects of groundwaters and their relation to routinely measured chemical parameters. Environmental Science and Technology32, 1799–1805CrossRefGoogle Scholar
  17. Hesslein RH (1976): Anin situ sampler for close interval pore water studies. Limnology and Oceanography21, 912–914Google Scholar
  18. Huckins JN, Petty JD, Lebo J, Almeida FV, Alvarez DA, Cranor WL, Clark RC (2000): Overview of the Permeability/Perfomance Reference Compound (PRC) approach forin situ recalibration/ calibration of SPMD environments. 21th Annual National Meeting of the Society of Environmental Toxicology and Chemistry, November, 2000, Nashville, PMP025Google Scholar
  19. Huckins JN, Tubergen MW, Manuweera GK (1990): Semipermeable membrane devices containing model lipid: a new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere20, 533–552CrossRefGoogle Scholar
  20. Kingston JK, Greenwood R, Mills GA, Morrison GM, Persson LB (2000): Development of a passive sampling system for the timeaveraged measurement of a range of organic pollutants in aquatic environments. Journal of Environmental Monitoring2, 487–495CrossRefGoogle Scholar
  21. Lefkovitz L, Crecelius E (1996): The use of SPMDs consisting of polyethylene alone to predict dissolved-phase organics in the Columbia River. Poster presented at the 17th Annual Meeting of the SETAC, Washington D.C., USA (Abstract P0523)Google Scholar
  22. Litten S, Mead B, Hassett J (1993): Application of passive samplers (PISCES) to locating a source of PCBs on the Black River, New York. Environmental Toxicology and Chemistry12, 639–647CrossRefGoogle Scholar
  23. Mayer LM (1976): Chemical water sampling in lakes and sediments with dialysis bags. Limnology and Oceanography21, 909–912CrossRefGoogle Scholar
  24. Mayer P, Wernsing J, Tolls J, DeMaagd PG-J, Sijm DTHM (1999): Establishing and controlling dissolved concentrations of hydrophobic organics by partitioning from a solid phase. Environmental Science and Technology33, 2284–2290CrossRefGoogle Scholar
  25. Müller L, Górecki T, Pawliszyn J (1999): Optimization of the SPME device design for field applications. Fresenius Journal of Analytical Chemistry364, 610–616CrossRefGoogle Scholar
  26. NAVFAC (2000): Diffusion membrane samplers — A low-cost alternative groundwater monitoring tool for VOCs. TechData Sheet, NFESC TDS-2085-ENVGoogle Scholar
  27. Negrào MR, Alpendurada MF (2001): Solvent-free method for the determination of polynuclear aromatic hydrocarbons in waste water by solid-phase microextraction-high-performance liquid chromatography with photodiode-array detection. Journal of Chromatography A823, 211–218CrossRefGoogle Scholar
  28. Nilsson T, Montanarella L, Baglio D, Tilio R, Bidoglio G, Facchetti S (1998): Analysis of volatile organic compounds in environmental water samples and soil gas by solid-phase microextraction. Journal of Environmental Analytical Chemistry69, 217–226CrossRefGoogle Scholar
  29. Parrott JL, Backus SM, Borgmann AL, Swyripy M (1999): The use of semipermeable membrane devices to concentrate chemicals in oil refinery effluents on the Mackenzie River. Arctic52, 125–138Google Scholar
  30. Pawliszyn J (1997): Solid Phase Microextraction — Theory and Practive. Wiley-VCH, New YorkGoogle Scholar
  31. Peterson SM, Apte SC, Batley GE, Coade G (1995): Passive samplers for chlorinated pesticides in estuarine waters. Chemical speciation and bioavailability7, 83–88Google Scholar
  32. Petty JD, Jones SB, Huckins JN, Cranor WL, Parris JT, McTague TB, Boyle TP (2000b): An approach for assessment of water quality using semipermeable membrane devices (SPMDs) and bioindicator tests. Chemosphere41, 311–321CrossRefGoogle Scholar
  33. Petty JD, Orazio CE, Huckins JN, Gale RW, Lebo JA, Meadows JC, Echols KR, Cranor WL (2000a): Considerations involved with the use of semipermeable membrane devices for monitoring environmental contaminants (Review). Journal of Chromatography A879, 83–95CrossRefGoogle Scholar
  34. Puls RW, Paul CJ (1997): Multi-layer sampling in conventional monitoring wells for improved estimation of vertical contaminant distribution and mass. Journal of Contaminant Hydrology25, 85–111CrossRefGoogle Scholar
  35. Sabaliunas D, Ellington J, Sabaliuniene I (1999): Screening bioavailable hydrophobic toxicants in surface waters with semipermeable membrane devices: role of inherent oleic acid in toxicity evaluation. Ecotoxicology and Environmental Safety44, 160–167CrossRefGoogle Scholar
  36. Sabaliunas D, Södergren A (1996): Uptake of organochlorine pesticides by solvent-filled cellulose and polyethylene membranes. Ecotoxicology and Environmental Safety35, 150–155CrossRefGoogle Scholar
  37. Schirmer K, Altenburger R, Weiss H, Schüürmann G (2001): Toxicological monitoring of a contaminant plume for implementing Natural Attenuation as a remediation option. 11th Annual Meeting of the Society of Environmental Toxicology and Chemistry (SETAC) Europe, Madrid, Spain, May 6–10, #338Google Scholar
  38. Schirmer K, Bols N, Schirmer M (2001): Sampling and toxicity monitoring device and method. US patent application, submitted July 2001 [No. 09/908, 690]Google Scholar
  39. Schirmer K, Bols NC (1999): Adsorption, distribution and bioavailability of fluoranthene in microwell plates. 9th Annual Meeting of the Society of Environmental Toxicology and Chemistry, Leipzig, Germany, May 25–29, 2e/P005Google Scholar
  40. Schirmer K, Chan AGJ, Greenberg BM, Dixon DG, Bols NC (1997): Methodology for demonstrating and measuring the photocytotoxicity of fluoranthene to fish cells in culture. Toxicology In Vitro11, 107–119CrossRefGoogle Scholar
  41. Schirmer K, Herbrick JS, Greenberg BM, Dixon DG, Bols NC (1999): The use of fish gill cells in culture to evaluate the cytotoxicity and photocytotoxicity of intact and photomodified creosote. Environmental Toxicology and Chemistry18, 1277–1288CrossRefGoogle Scholar
  42. Schirmer K, Tom DJ, Bols NC, Sherry JP (2001b): Ability of fractionated petroleum refinery effluent to elicit cyto- and photocytotoxic responses and to induce 7-ethoxyresorufin-odeethylase activity in fish cell lines. The Science of the Total Environment271, 61–78CrossRefGoogle Scholar
  43. Snyder SA, Villeneuve DL, Snyder EM, Giesy JP (2001): Identification and quantification of estrogen receptor agonists in waste water effluents. Environmental Science and Technology35, 3620–3625CrossRefGoogle Scholar
  44. Sorge H, Götzelmann P, Nallinger M (1994): Passives Adsorptionsverfahren zur Erkundung von Organischen Kontaminationen. Terra Tech8 Google Scholar
  45. Södergren A (1987): Solvent-filled dialysis membranes simulate uptake of pollutants by aquatic organisms. Environmental Science and Technology21, 855–859CrossRefGoogle Scholar
  46. Södergren A (1990): Monitoring of persistent, lipophilic pollutants in water and sediment by solvent-filled dialysis membranes. Ecotoxicology and Environmental Safety19, 143–149CrossRefGoogle Scholar
  47. Vrana B, Popp P, Paschke A, Schüürmann G (2001): Membrane enclosed sorptive coating (MESCO). An integrative passive sampler for monitoring organic contaminants in water. Analytical Chemistry73 (21) 5191–5200CrossRefGoogle Scholar
  48. Vrana B, Schüürmann G (2002): Calibrating the uptake kinetics of semipermeable membrane devices in water: the impact of hydrodynamics. Environmental Science and Technology36 (2), 290–296CrossRefGoogle Scholar
  49. Whyte JJ, Karrow NA, Boehrmann HJ, Dixon DG, Bols NC (2000): Combined methodologies for measuring exposure of rainbow trout (Oncorhynchus mykiss) to polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated microcosms. Polycyclic Aromatic Compounds18, 71–98CrossRefGoogle Scholar
  50. Zabik JM, Aston LS, Seiber JN (1992): Rapid characterization of pesticide residues in contaminated soils by passive sampling devices. Environmental Toxicology and Chemistry11, 765–770CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  1. 1.Nachwuchsgruppe Molekulare TierzelltoxikologieUFZ — Umweltforschungszentrum Leipzig-Halle GmbHLeipzig

Personalised recommendations